Skip to main content

Advertisement

Log in

Biochar modification to enhance arsenic removal from water: a review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic (As) contamination is a major threat to drinking water quality throughout the world, and the development of appropriate remediation methods is critical. Adsorption is considered the most effective method for remediation of As-contaminated water. Biochar is a promising adsorbent and widely discussed for As removal due to its potential low cost and environmental friendliness. However, pristine biochar generally exhibited relatively low adsorption capacity for As mainly due to the electrostatic repulsion between the negatively charged biochar and As. Biochar modification, especially metal modification, was developed to boost the adsorption capacity for As. A systematic analysis of As removal as affected by biochar properties and modification will be of great help for As removal. This paper presents a comprehensive review on As removal by biochars from different feedstock, preparation procedures, and modification methods, with a major focus on the possible mechanisms of interaction between As and biochar. Biochar derived from sewage sludge exhibited relatively high adsorption capacity for As. Considering energy conservation, biochars prepared at 401–500 °C were more favorable in adsorbing As. Fe-modified biochar was the most popular modified biochar for As remediation due to its low cost and high efficiency. In addition, the limitations of the current studies and future perspectives are presented. The aim of this review is to provide guidance for the preparation of low-cost, environmentally friendly, and high efficiency biochar for the remediation of As-contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Alchouron, J., Navarathna, C., Chludil, H. D., Dewage, N. B., Perez, F., Hassan, E. B., Pittman, C. U., Jr., Vega, A. S., & Mlsna, T. E. (2020). Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135943

    Article  Google Scholar 

  • Alkurdi, S. S. A., Al-Juboori, R. A., Bundschuh, J., Bowtell, L., & McKnight, S. (2020). Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environmental Pollution, 262, 114221.

    Article  CAS  Google Scholar 

  • Alkurdi, S. S. A., Herath, I., Bundschuh, J., Al-Juboori, R. A., Vithanage, M., & Mohan, D. (2019). Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environment International, 127, 52–69.

    Article  CAS  Google Scholar 

  • Amenaghawon, A. N., Anyalewechi, C. L., Okieimen, C. O., & Kusuma, H. S. (2021). Biomass pyrolysis technologies for value-added products: A state-of-the-art review. Environment, Development and Sustainability, 23, 14324–14378.

    Article  Google Scholar 

  • Aredes, S., Klein, B., & Pawlik, M. (2012). The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production, 29–30, 208–213.

    Article  Google Scholar 

  • Asere, T. G., Stevens, C. V., & Du Laing, G. (2019). Use of (modified) natural adsorbents for arsenic remediation: A review. Science of the Total Environment, 676, 706–720.

    Article  CAS  Google Scholar 

  • Bakshi, S., Banik, C., Rathke, S. J., & Laird, D. A. (2018). Arsenic sorption on zero-valent iron-biochar complexes. Water Research, 137, 153–163.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159, 474–480.

    Article  CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part 1: Occurrence, toxicity, speciation, mobility. Acta Hydrochimica Et Hydrobiologica, 31, 9–18.

    Article  CAS  Google Scholar 

  • Bridgwater, A. V., Toft, A. J., & Brammer, J. G. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable & Sustainable Energy Reviews, 6, 181–248.

    Article  CAS  Google Scholar 

  • Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., Joseph, S., Crowley, D., Pan, G., & Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals—A meta-analysis. Journal of Environmental Management, 222, 76–85.

    Article  CAS  Google Scholar 

  • Chetia, M., Goswamee, R. L., Banerjee, S., Chatterjee, S., Singh, L., Srivastava, R. B., & Sarma, H. P. (2012). Arsenic removal from water using calcined Mg–Al layered double hydroxide. Clean Technologies and Environmental Policy, 14, 21–27.

    Article  CAS  Google Scholar 

  • Cho, D.-W., Park, J., Kwon, G., Lee, J., Yim, G.-J., Jung, W., & Cheong, Y.-W. (2020). Zirconia-assisted pyrolysis of coffee waste in CO2 environment for the simultaneous production of fuel gas and composite adsorbent. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2019.121989

    Article  Google Scholar 

  • Choppala, G., Bolan, N., Kunhikrishnan, A., & Bush, R. (2016). Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere, 144, 374–381.

    Article  CAS  Google Scholar 

  • Chuang, C. L., Fan, M., Xu, M., Brown, R. C., Sung, S., Saha, B., & Huang, C. P. (2005). Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere, 61, 478–483.

    Article  CAS  Google Scholar 

  • Cuong, D. V., Wu, P. C., Chen, L. I., & Hou, C. H. (2021). Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 188, 116495.

    Article  CAS  Google Scholar 

  • Dadwal, A., & Mishra, V. (2017). Review on biosorption of arsenic from contaminated water. Clean-Soil Air Water. https://doi.org/10.1002/clen.201600364

    Article  Google Scholar 

  • Das, S. K., Ghosh, G. K., Avasthe, R. K., & Sinha, K. (2021). Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2020.111501

    Article  Google Scholar 

  • Dong, X., Ma, L. Q., Gress, J., Harris, W., & Li, Y. (2014). Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 267, 62–70.

    Article  CAS  Google Scholar 

  • Dutta, B., Raghavan, G. S. V., & Ngadi, M. (2012). Surface characterization and classification of slow and fast pyrolyzed biochar using novel methods of pycnometry and hyperspectral imaging. Journal of Wood Chemistry and Technology, 32, 105–120.

    Article  CAS  Google Scholar 

  • Feng, Y., Xu, Y., Xie, X., Gan, Y., Su, C., Pi, K., Finfrock, Y. Z., & Liu, P. (2021). The dual role of oxygen in redox-mediated removal of aqueous arsenic(III/V) by Fe-modified biochar. Bioresource Technology, 340, 125674.

    Article  CAS  Google Scholar 

  • Guo, J., Yan, C., Luo, Z., Fang, H., Hu, S., & Cao, Y. (2019). Synthesis of a novel ternary HA/Fe–Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. Journal of Environmental Sciences, 85, 168–176.

    Article  CAS  Google Scholar 

  • Hassan, M., Liu, Y., Naidu, R., Parikh, S. J., Du, J., Qi, F., & Willett, I. R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.140714

    Article  Google Scholar 

  • He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q., & Tang, J. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 612, 1177–1186.

    Article  CAS  Google Scholar 

  • Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization. Current Pollution Reports, 2, 68–89.

    Article  CAS  Google Scholar 

  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.

    Article  CAS  Google Scholar 

  • Hussain, M., Imran, M., Abbas, G., Shahid, M., Iqbal, M., Naeem, M. A., Murtaza, B., Amjad, M., Shah, N. S., Khan, Z. U. H., & Ul Islam, A. (2019). A new biochar from cotton stalks for As (V) removal from aqueous solutions: Its improvement with H3PO4 and KOH. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00431-2

    Article  Google Scholar 

  • Imran, M., Iqbal, M. M., Iqbal, J., Shah, N. S., Khan, Z. U. H., Murtaza, B., Amjad, M., Ali, S., & Rizwan, M. (2021). Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: Modeling, thermodynamics and reusability. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2020.123338

    Article  Google Scholar 

  • Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 169, 622–629.

    Article  CAS  Google Scholar 

  • Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., & Pan, G. X. (2013). Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 4, 323–343.

    Article  CAS  Google Scholar 

  • Kang, D., Yu, X., Tong, S., Ge, M., Zuo, J., Cao, C., & Song, W. (2013). Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chemical Engineering Journal, 228, 731–740.

    Article  CAS  Google Scholar 

  • Khan, Z. H., Gao, M., Qiu, W., Qaswar, M., Islam, M. S., & Song, Z. (2020a). The sorbed mechanisms of engineering magnetic biochar composites on arsenic in aqueous solution. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10082-x

    Article  Google Scholar 

  • Khan, Z. H., Gao, M., Qiu, W., & Song, Z. (2020b). Efficient As(III) removal by novel MoS2-impregnated Fe-oxide-biochar composites: Characterization and mechanisms. ACS Omega, 5, 13224–13235.

    Article  CAS  Google Scholar 

  • Khan, Z. H., Gao, M., Wu, J., Bi, R., Mehmood, C. T., & Song, Z. (2021). Mechanism of As(III) removal properties of biochar-supported molybdenum-disulfide/iron-oxide system. Environmental Pollution, 287, 117600.

    Article  CAS  Google Scholar 

  • Kluepfel, L., Keiluweit, M., Kleber, M., & Sander, M. (2014). Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 48, 5601–5611.

    Article  Google Scholar 

  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018). Arsenic speciation dynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors—A review. Water Research, 140, 403–414.

    Article  CAS  Google Scholar 

  • Lee, S., Han, J., & Ro, H. M. (2022). Mechanistic insights into Cd(II) and As(V) sorption on Miscanthus biochar at different pH values and pyrolysis temperatures. Chemosphere, 287, 132179.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381–387.

    Article  Google Scholar 

  • Li, F., Wan, Y., Chen, J., Hu, X., Tsang, D. C. W., Wang, H., & Gao, B. (2020). Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(V). Chemosphere, 260, 127566.

    Article  CAS  Google Scholar 

  • Li, G., Khan, S., Ibrahim, M., Sun, T.-R., Tang, J.-F., Cotner, J. B., & Xu, Y.-Y. (2018a). Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 348, 100–108.

    Article  CAS  Google Scholar 

  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478.

    Article  CAS  Google Scholar 

  • Li, R., Liang, W., Wang, J. J., Gaston, L. A., Huang, D., Huang, H., Lei, S., Awasthi, M. K., Zhou, B., Xiao, R., & Zhang, Z. (2018b). Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212, 77–87.

    Article  CAS  Google Scholar 

  • Li, R., Wang, J. J., Gaston, L. A., Zhou, B., Li, M., Xiao, R., Wang, Q., Zhang, Z., Huang, H., Liang, W., Huang, H., & Zhang, X. (2018c). An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon, 129, 674–687.

    Article  CAS  Google Scholar 

  • Li, Y., Shen, Y., Strong, J., & Wang, H. (2012). Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeIIredox wheel” in dynamic redox environments? Journal of Soils & Sediments, 12, 683–693.

    Article  CAS  Google Scholar 

  • Lian, F., & Xing, B. (2017). Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science & Technology, 51, 13517–13532.

    Article  CAS  Google Scholar 

  • Lima, J. Z., Ferreira da Silva, E., Patinha, C., Duraes, N., Vieira, E. M., & Rodrigues, V. G. S. (2022). Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: Kinetic, isotherm and oral bioaccessibility study. Environmental Research, 204, 111988.

    Article  CAS  Google Scholar 

  • Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H. W. (2017). Arsenic removal in aqueous solution by a novel Fe–Mn modified biochar composite: Characterization and mechanism. Ecotoxicology and Environmental Safety, 144, 514–521.

    Article  CAS  Google Scholar 

  • Lin, L., Song, Z., Huang, Y., Khan, Z. H., & Qiu, W. (2019a). Removal and oxidation of arsenic from aqueous solution by biochar impregnated with Fe–Mn oxides. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-019-4146-5

    Article  Google Scholar 

  • Lin, L., Song, Z., Khan, Z. H., Liu, X., & Qiu, W. (2019b). Enhanced As(III) removal from aqueous solution by Fe–Mn–La-impregnated biochar composites. Science of the Total Environment, 686, 1185–1193.

    Article  CAS  Google Scholar 

  • Liu, J., He, L., Dong, F., & Hudson-Edwards, K. A. (2016). The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies. Chemosphere, 153, 146–154.

    Article  CAS  Google Scholar 

  • Liu, K., Li, F., Cui, J., Yang, S., & Fang, L. (2020). Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. Journal of Hazardous Materials, 395, 122623.

    Article  CAS  Google Scholar 

  • Liu, K., Li, F., Zhao, X., Wang, G., & Fang, L. (2021a). The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: Surface area versus electrochemical property. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2020.126851

    Article  Google Scholar 

  • Liu, L., Zhao, J., Liu, X., Bai, S., Lin, H., & Wang, D. (2021b). Reduction and removal of As(V) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge. Chemosphere, 277, 130273.

    Article  CAS  Google Scholar 

  • Liu, Q., Wu, L., Gorring, M., & Deng, Y. (2019a). Aluminum-impregnated biochar for adsorption of arsenic(V) in urban stormwater runoff. Journal of Environmental Engineering. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001503

    Article  Google Scholar 

  • Liu, S., Huang, B., Chai, L., Liu, Y., Zeng, G., Wang, X., Zeng, W., Shang, M., Deng, J., & Zhou, Z. (2017). Enhancement of As(v) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Advances, 7, 10891–10900.

    Article  CAS  Google Scholar 

  • Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115, 12251–12285.

    Article  CAS  Google Scholar 

  • Liu, X., Gao, M., Qiu, W., Khan, Z. H., Liu, N., Lin, L., & Song, Z. (2019b). Fe-Mn-Ce oxide-modified biochar composites as efficient adsorbents for removing As(III) from water: Adsorption performance and mechanisms. Environmental Science and Pollution Research, 26, 17373–17382.

    Article  CAS  Google Scholar 

  • Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environmental Science & Technology, 45, 9473–9483.

    Article  CAS  Google Scholar 

  • Mierzwa-Hersztek, M., Gondek, K., Klimkowicz-Pawlas, A., Baran, A., & Bajda, T. (2018). Sewage sludge biochars management-ecotoxicity, mobility of heavy metals, and soil microbial biomass. Environmental Toxicology and Chemistry, 37, 1197–1207.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163, 247–255.

    Article  CAS  Google Scholar 

  • Navarathna, C. M., Karunanayake, A. G., Gunatilake, S. R., Pittman, C. U., Jr., Perez, F., Mohan, D., & Mlsna, T. (2019). Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.109429

    Article  Google Scholar 

  • Nguyen, T. H., Pham, T. H., Nguyen Thi, H. T., Nguyen, T. N., Nguyen, M.-V., Tran Dinh, T., Nguyen, M. P., Do, T. Q., Phuong, T., Hoang, T. T., Mai Hung, T. T., & Thi, V. H. T. (2019). Synthesis of iron-modified biochar derived from rice straw and its application to arsenic removal. Journal of Chemistry, 2019, 1–8.

    Google Scholar 

  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., Wang, H., Murtaza, B., Islam, E., Nawaz, M. F., & Luettge, A. (2018). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 621, 1642–1651.

    Article  CAS  Google Scholar 

  • Oliveira, I., Bloehse, D., & Ramke, H.-G. (2013). Hydrothermal carbonization of agricultural residues. Bioresource Technology, 142, 138–146.

    Article  CAS  Google Scholar 

  • Petter, F. A., & Madari, B. E. (2012). Biochar: Agronomic and environmental potential in Brazilian savannah soils. Revista Brasileira De Engenharia Agricola E Ambiental, 16, 761–768.

    Article  Google Scholar 

  • Prevoteau, A., Ronsse, F., Cid, I., Boeckx, P., & Rabaey, K. (2016). The electron donating capacity of biochar is dramatically underestimated. Scientific Reports. https://doi.org/10.1038/srep32870

    Article  Google Scholar 

  • Prins, M. J., Ptasinski, K. J., & Janssen, F. (2006). Torrefaction of wood—Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis, 77, 28–34.

    Article  CAS  Google Scholar 

  • Qian, W., Zhao, A.-Z., & Xu, R.-K. (2013). Sorption of As(V) by aluminum-modified crop straw-derived biochars. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-013-1610-5

    Article  Google Scholar 

  • Qin, J., Li, Q., Liu, Y., Niu, A., & Lin, C. (2020). Biochar-driven reduction of As(V) and Cr(VI): Effects of pyrolysis temperature and low-molecular-weight organic acids. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.110873

    Article  Google Scholar 

  • Rahman, M. A., Lamb, D., Rahman, M. M., Bahar, M. M., Sanderson, P., Abbasi, S., Bari, A., & Naidu, R. (2021). Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar. Journal of Hazardous Materials, 409, 124488.

    Article  CAS  Google Scholar 

  • Sanyang, M. L., Ghani, W. A. W. A. K., Idris, A., & Ahmad, M. B. (2014). Hydrogel biochar composite for arsenic removal from wastewater. Desalination and Water Treatment, 57, 3674–3688.

    Article  Google Scholar 

  • Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation—A critical review. Chemosphere, 158, 37–49.

    Article  CAS  Google Scholar 

  • Scott, M. J., & Morgan, J. J. (1995). Reactions at oxide surfaces. 1. Oxidation of As(III) by synthetic birnessite. Environmental Science & Technology, 29, 1898–1905.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Rahman, M. M., Naidu, R., Dong, Z., Shahid, M., & Arshad, M. (2015). unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 12, 12371–12390.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Saqib, Z. A., Nawaz, M. F., Shaheen, S. M., Wang, H., Tsang, D. C. W., Bundschuh, J., Ok, Y. S., & Rinklebe, J. (2019). Exploring the arsenic removal potential of various biosorbents from water. Environment International, 123, 567–579.

    Article  CAS  Google Scholar 

  • Sherlala, A. I. A., Raman, A. A. A., Bello, M. M., & Buthiyappan, A. (2019). Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. Journal of Environmental Management, 246, 547–556.

    Article  CAS  Google Scholar 

  • Sizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34–47.

    Article  CAS  Google Scholar 

  • Sohi, S. P. (2012). Agriculture. Carbon storage with benefits. Science, 338, 1034–1035.

    Article  CAS  Google Scholar 

  • Soltani, R. D. C., Safari, M., Maleki, A., Rezaee, R., Shahmoradi, B., Shahmohammadi, S., & Ghahramani, E. (2017). Decontamination of arsenic(V)-contained liquid phase utilizing Fe3O4/bone char nanocomposite encapsulated in chitosan biopolymer. Environmental Science and Pollution Research, 24, 15157–15166.

    Article  Google Scholar 

  • Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481.

    Article  CAS  Google Scholar 

  • Uslu, A., Faaij, A. P. C., & Bergman, P. C. A. (2008). Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33, 1206–1223.

    Article  Google Scholar 

  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., Kirkham, M. B., & Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113, 219–230.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A. R., Ma, L. Q., Harris, W. G., & Migliaccio, K. W. (2015a). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181, 13–17.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015b). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., & Li, Y. (2016a). Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides. Journal of Industrial and Engineering Chemistry, 37, 361–365.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Li, Y., Zimmerman, A. R., & Cao, X. (2016b). Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. RSC Advances, 6, 17792–17799.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Li, Y., Creamer, A. E., & He, F. (2017). Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. Journal of Hazardous Materials, 322, 172–181.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, Y., Zhan, W., Zheng, K., Wang, J., Zhang, C., & Chen, R. (2020). Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139060

    Article  Google Scholar 

  • Wei, Y., Wei, S., Liu, C., Chen, T., Tang, Y., Ma, J., Yin, K., & Luo, S. (2019). Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Research. https://doi.org/10.1016/j.watres.2019.115107

    Article  Google Scholar 

  • Wongrod, S., Simon, S., van Hullebusch, E. D., Lens, P. N. L., & Guibaud, G. (2018). Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption. International Biodeterioration & Biodegradation, 135, 96–102.

    Article  CAS  Google Scholar 

  • Wu, C., Huang, L., Xue, S. G., Huang, Y. Y., Hartley, W., Cui, M. Q., & Wong, M. H. (2017). Arsenic sorption by red mud-modified biochar produced from rice straw. Environmental Science and Pollution Research, 24, 18168–18178.

    Article  CAS  Google Scholar 

  • Xu, X. Y., McGrath, S. P., & Zhao, F. J. (2007). Rapid reduction of arsenate in the medium mediated by plant roots. New Phytologist, 176, 590–599.

    Article  CAS  Google Scholar 

  • Xu, Y., Xie, X., Feng, Y., Ashraf, M. A., Liu, Y., Su, C., Qian, K., & Liu, P. (2020). As(III) and As(V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging. Bioresource Technology, 304, 122978.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467–1471.

    Article  CAS  Google Scholar 

  • Yoon, Y., Park, W. K., Hwang, T. M., Yoon, D. H., Yang, W. S., & Kang, J. W. (2016). Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. Journal of Hazardous Materials, 304, 196–204.

    Article  CAS  Google Scholar 

  • Yuan, Y., Bolan, N., Prevoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., & Wang, H. (2017). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281.

    Article  CAS  Google Scholar 

  • Zama, E. F., Zhu, Y.-G., Reid, B. J., & Sun, G.-X. (2017). The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Journal of Cleaner Production, 148, 127–136.

    Article  CAS  Google Scholar 

  • Zhang, B., Han, L., Sun, K., Ma, C., He, J., Chen, L., Jin, J., Li, F., & Yang, Z. (2022a). Loading with micro-nanosized alpha-MnO2 efficiently promotes the removal of arsenite and arsenate by biochar derived from maize straw waste: Dual role of deep oxidation and adsorption. Science of the Total Environment, 807, 150994.

    Article  CAS  Google Scholar 

  • Zhang, F., Wang, X., Xionghui, J., & Ma, L. (2016). Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environmental Pollution, 216, 575–583.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457–462.

    Article  CAS  Google Scholar 

  • Zhang, Q. L., Gao, N. Y., Lin, Y. C., Xu, B., & Le, L. S. (2007). Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon. Water Environment Research, 79, 931–936.

    Article  CAS  Google Scholar 

  • Zhang, W., Cho, Y., Vithanage, M., Shaheen, S. M., Rinklebe, J., Alessi, D. S., Hou, C.-H., Hashimoto, Y., Withana, P. A., & Ok, Y. S. (2022b). Arsenic removal from water and soils using pristine and modified biochars. Biochar. https://doi.org/10.1007/s42773-022-00181-y

    Article  Google Scholar 

  • Zhong, D., Jiang, Y., Zhao, Z., Wang, L., Chen, J., Ren, S., Liu, Z., Zhang, Y., Tsang, D. C. W., & Crittenden, J. C. (2019). pH dependence of arsenic oxidation by rice-husk-derived biochar: Roles of redox-active moieties. Environmental Science & Technology, 53, 9034–9044.

    Article  CAS  Google Scholar 

  • Zhong, D., Zhao, Z., Jiang, Y., Yang, X., Wang, L., Chen, J., Guan, C. Y., Zhang, Y., Tsang, D. C. W., & Crittenden, J. C. (2020). Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca2+-rich groundwater under anoxic conditions. Water Research, 183, 116106.

    Article  CAS  Google Scholar 

  • Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 152, 538–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (41977334, 42067055 and 42167055), Yunnan Fundamental Research Projects (202001AS070015), and Yunnan Provincial Scientific Innovation Team of Soil Environment and Ecological Safety, Kunming University of Science and Technology (2019HC008).

Author information

Authors and Affiliations

Authors

Contributions

LT was involved in conceptualization and writing—original draft. ZC done investigation, software, and data collection. NL performed supervision, writing—review and editing. MW done supervision and writing—review and editing. BP did writing—reviewing and editing. HL contributed to writing—original draft, writing—review and editing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Hao Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest, and no significant financial assistance for this work that could have influenced its outcome.

Consent to publication

All of the authors listed in the manuscript have agreed to be authors, have read and accepted the work, and have given their approval to the manuscript’s submission and future publication.

Consent to participate and ethics approval

The study does not involve human subjects and/or animals, and the manuscript does not include case reports/case series.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 427 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Li, H., Chang, Z. et al. Biochar modification to enhance arsenic removal from water: a review. Environ Geochem Health 45, 2763–2778 (2023). https://doi.org/10.1007/s10653-022-01462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01462-y

Keywords

Navigation