Skip to main content

Advertisement

Log in

Comparison of pollution status and source apportionment for PCBs and OCPs of indoor dust from an industrial city

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this study, the pollution status of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was investigated in indoor and outdoor dust from three different functional areas of Hefei, China. The relationship between the concentrations of PCBs and OCPs and different influencing factors in dwellings was studied. The results showed that the concentrations of PCBs and OCPs were higher in samples from dwellings with higher smoking frequency, lower cleaning frequency, higher floors and smaller household size. The results of Spearman’s correlation coefficient analysis indicated that PCBs and OCPs were not consistently associated with each other, while sources of low-chlorinated PCBs and high-chlorinated PCBs were different. Scanning electron microscopy (SEM) shows the shape of indoor dust was a mixture of blocky, flocculated, spherical structures, and irregular shapes. The results of principal component analysis (PCA) and positive matrix factorization model (PMF) showed that the PCBs and OCPs of indoor dust came from both indoor and outdoor sources between local and regional transport. Carbon (δ13C) and Nitrogen (δ15N) stable isotope results indicate or show that the indoor dust (δ13C: − 24.37‰, δ15N: 6.88‰) and outdoor dust (δ13C: − 12.65‰, δ15N: 2.558‰) is derived from fossil fuel, coal combustion, road dust, fly ash, C4 biomass and soil. Potential source contribution factor (PSCF) and concentration weighted-trajectory analysis suggest that sources of pollutants were local and regional transport from surrounding provinces and marine emissions. The average daily dose (adult: 8.20E−04, children: 2.37E−03) of pollutants and the carcinogenic risks (adult: 1.23E−02, children: 2.65E−02) were relatively greater for children than adults. This study demonstrates the utility of SEM to characterize indoor dust morphology while combining PMF, PSCF, and stable isotope methods in identifying indoor PCBs and OCPs sources and regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: A review. Critical Reviews in Biotechnology, 10, 241–249. https://doi.org/10.3109/07388559009038210

    Article  CAS  Google Scholar 

  • Aigner, E. J., Leone, A. D., & Falconer, R. L. (1998). Concentrations and enantiomeric ratios of organochlorine pesticides in soils from the US corn belt. Environmental Science and Technology, 32, 1162–1168. https://doi.org/10.1021/es970750h

    Article  CAS  Google Scholar 

  • Ali, M. U., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Munir, M. A. M., & Fu, B. (2017). Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere, 181, 111–121. https://doi.org/10.1016/j.chemosphere.2017.04.061

    Article  CAS  Google Scholar 

  • Ali, M. U., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Munir, M. A. M., & Zhang, H. (2018). Compositional characteristics of black-carbon and nanoparticles in air-conditioner dust from an inhabitable industrial metropolis. Journal of Cleaner Production, 180, 34–42. https://doi.org/10.1016/j.jclepro.2018.01.161

    Article  CAS  Google Scholar 

  • Ali, N., Ali, L., Mehdi, T., Dirtu, A. C., Al-Shammari, F., Neels, H., & Covaci, A. (2013). Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion. Environment International, 55, 62–70. https://doi.org/10.1016/j.envint.2013.02.001

    Article  CAS  Google Scholar 

  • Ali-Taleshi, M. S., Moeinaddini, M., Riyahi Bakhtiari, A., Feiznia, S., Squizzato, S., & Bourliva, A. (2021). A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environmental Pollution, 274, 115883. https://doi.org/10.1016/j.envpol.2020.115883

    Article  CAS  Google Scholar 

  • Ambade, B., Kumar, A., & Latif, M. (2021a). Emission sources, characteristics and risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) from traffic sites.

  • Ambade, B., Kumar, A., Kumar, A., & Sahu, L. K. (2022a). Temporal variability of atmospheric particulate-bound polycyclic aromatic hydrocarbons (PAHs) over central east India: Sources and carcinogenic risk assessment. Air Quality, Atmosphere & Health, 15, 115–130. https://doi.org/10.1007/s11869-021-01089-5

    Article  CAS  Google Scholar 

  • Ambade, B., Kurwadkar, S., Sankar, T. K., & Kumar, A. (2021b). Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown. Air Quality, Atmosphere & Health, 14, 1081–1095. https://doi.org/10.1007/s11869-021-01004-y

    Article  CAS  Google Scholar 

  • Ambade, B., Sankar, T. K., Kumar, A., Gautam, A. S., & Gautam, S. (2021c). COVID-19 lockdowns reduce the Black carbon and polycyclic aromatic hydrocarbons of the Asian atmosphere: Source apportionment and health hazard evaluation. Environment, Development and Sustainability, 23, 12252–12271. https://doi.org/10.1007/s10668-020-01167-1

    Article  Google Scholar 

  • Ambade, B., Sankar, T. K., Panicker, A. S., Gautam, A. S., & Gautam, S. (2021d). Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Climate, 38, 100896. https://doi.org/10.1016/j.uclim.2021d.100896

    Article  Google Scholar 

  • Ambade, B., Sethi, S. S., Giri, B., Biswas, J. K., & Bauddh, K. (2022b). Characterization, behavior, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the estuary sediments. Bulletin of Environment Contamination and Toxicology, 108, 243–252. https://doi.org/10.1007/s00128-021-03393-3

    Article  CAS  Google Scholar 

  • Ambade, B., & Sethi Shrikanta, S. (2021). Health risk assessment and characterization of polycyclic aromatic hydrocarbon from the hydrosphere. Journal of Hazardous, Toxic, and Radioactive Waste, 25, 05020008. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000586

    Article  CAS  Google Scholar 

  • Andersen, H. V., Gunnarsen, L., Knudsen, L. E., & Frederiksen, M. (2020). PCB in air, dust and surface wipes in 73 Danish homes. International Journal of Hygiene and Environmental Health, 229, 113429. https://doi.org/10.1016/j.ijheh.2019.113429

    Article  CAS  Google Scholar 

  • Anezaki, K., Kannan, N., & Nakano, T. (2015). Polychlorinated biphenyl contamination of paints containing polycyclic- and Naphthol AS-type pigments. Environmental Science and Pollution Research, 22, 14478–14488. https://doi.org/10.1007/s11356-014-2985-6

    Article  CAS  Google Scholar 

  • Anezaki, K., & Nakano, T. (2014). Concentration levels and congener profiles of polychlorinated biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments. Environmental Science and Pollution Research International, 21, 998–1009. https://doi.org/10.1007/s11356-013-1977-2

    Article  CAS  Google Scholar 

  • Anh, H. Q., Watanabe, I., Tomioka, K., Minh, T. B., & Takahashi, S. (2019). Characterization of 209 polychlorinated biphenyls in street dust from northern Vietnam: Contamination status, potential sources, and risk assessment. Science of the Total Environment, 652, 345–355. https://doi.org/10.1016/j.scitotenv.2018.10.240

    Article  CAS  Google Scholar 

  • Aslam, I., Baqar, M., Qadir, A., Mumtaz, M., Li, J., & Zhang, G. (2021). Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. Indoor Air, 31, 1417–1426. https://doi.org/10.1111/ina.12788

    Article  CAS  Google Scholar 

  • Audy, O., Melymuk, L., Venier, M., Vojta, S., Becanova, J., Romanak, K., Vykoukalova, M., Prokes, R., Kukucka, P., Diamond, M. L., & Klanova, J. (2018). PCBs and organochlorine pesticides in indoor environments: A comparison of indoor contamination in Canada and Czech Republic. Chemosphere, 206, 622–631. https://doi.org/10.1016/j.chemosphere.2018.05.016

    Article  CAS  Google Scholar 

  • Baek, S. Y., Choi, S. D., Lee, S. J., & Chang, Y. S. (2008). Assessment of the spatial distribution of coplanar PCBs, PCNs, and PBDEs in a multi-industry region of South Korea using passive air samplers. Environmental Science and Technology, 42, 7336–7340. https://doi.org/10.1021/es801019k

    Article  CAS  Google Scholar 

  • Baek, S. Y., Choi, S. D., Park, H., Kang, J. H., & Chang, Y. S. (2010a). Spatial and seasonal distribution of polychlorinated biphenyls (PCBs) in the vicinity of an iron and steel making plant. Environmental Science and Technology, 44, 3035–3040. https://doi.org/10.1021/es903251h

    Article  CAS  Google Scholar 

  • Ball, M., & Salthammer, T. (1999). 1.4 Sampling and analysis of PCDDs/PCDFs. In Organic Indoor Air Pollutants: Occurence, Measurement, Evaluation (p. 45).

  • Breivik, K., Sweetman, A., Pacyna, J. M., & Jones, K. C. (2002). Towards a global historical emission inventory for selected PCB congeners—A mass balance approach: 2. Emissions. Science of the Total Environment, 290, 199–224. https://doi.org/10.1016/S0048-9697(01)01076-2

    Article  CAS  Google Scholar 

  • Cao, J.-J., Chow, J. C., Tao, J., Lee, S.-C., Watson, J. G., Ho, K.-F., Wang, G.-H., Zhu, C.-S., & Han, Y.-M. (2011). Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmospheric Environment, 45, 1359–1363. https://doi.org/10.1016/j.atmosenv.2010.10.056

    Article  CAS  Google Scholar 

  • Chen, R., Chen, H., Song, L., Yao, Z., Meng, F., & Teng, Y. (2019). Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Science of the Total Environment, 694, 133819. https://doi.org/10.1016/j.scitotenv.2019.133819

    Article  CAS  Google Scholar 

  • Chen, S. C., & Liao, C. M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366, 112–123. https://doi.org/10.1016/j.scitotenv.2005.08.047

    Article  CAS  Google Scholar 

  • Chithra, V. S., & Nagendra, S. M. S. (2013). Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, 77, 579–587. https://doi.org/10.1016/j.atmosenv.2013.05.044

    Article  CAS  Google Scholar 

  • Corner, R., Sundahl, M., Ek-Olausson, B., & Tysklind, M. (2002). PCB in indoor air and dust in buildings in Stockholm. Indoor Air, 141–146.

  • Ding, S., Dong, F., Wang, B., Chen, S., Zhang, L., Chen, M., Gao, M., & He, P. (2015). Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of Northern China: Distribution, sources, and risk assessment. Environmental Science and Pollution Research International, 22, 17171–17181. https://doi.org/10.1007/s11356-015-4949-x

    Article  CAS  Google Scholar 

  • Du, S., Wall, S. J., Cacia, D., & Rodenburg, L. A. (2009). Passive air sampling for polychlorinated biphenyls in the Philadelphia metropolitan area. Environmental Science and Technology, 43, 1287–1292. https://doi.org/10.1021/es802957y

    Article  CAS  Google Scholar 

  • EFSA. (2012). Update of the monitoring of dioxins and PCBs levels in food and feed. EFSA Journal, 10, 2832.

    Google Scholar 

  • Eqani, S. A., Malik, R. N., Cincinelli, A., Zhang, G., Mohammad, A., Qadir, A., Rashid, A., Bokhari, H., Jones, K. C., & Katsoyiannis, A. (2013). Uptake of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: The case of River Chenab. Science of the Total Environment, 450–451, 83–91. https://doi.org/10.1016/j.scitotenv.2013.01.052

    Article  CAS  Google Scholar 

  • Eqani, S. A., Malik, R. N., & Mohammad, A. (2011). The level and distribution of selected organochlorine pesticides in sediments from River Chenab, Pakistan. Environmental Geochemistry and Health, 33, 33–47. https://doi.org/10.1007/s10653-010-9312-z

    Article  CAS  Google Scholar 

  • Franzblau, A., Zwica, L., Knutson, K., Chen, Q., Lee, S.-Y., Hong, B., Adriaems, P., Demond, A., Garabrant, D., & Gillespie, B. (2009). An investigation of homes with high concentrations of PCDDs, PCDFs, and/or dioxin-like PCBs in house dust. Journal of Occupational and Environmental Hygiene, 6, 188–199.

    Article  CAS  Google Scholar 

  • Garbarienė, I., Garbaras, A., Masalaite, A., Ceburnis, D., Krugly, E., Kauneliene, V., Remeikis, V., & Martuzevicius, D. (2020). Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis. Atmospheric Environment., 237, 117673. https://doi.org/10.1016/j.atmosenv.2020.117673

    Article  CAS  Google Scholar 

  • Gu, K., & Zhu, L. (2018). Study on the spatial-temporal distribution characteristics of PM2. 5 in Hefei urban areas. Journal of Ecology and Environmental Sciences, 27, 1107–1112.

    Google Scholar 

  • Guida, Y., de Carvalho, G. O., Capella, R., Pozo, K., Lino, A. S., Azeredo, A., Carvalho, D. F. P., Braga, A. L. F., Torres, J. P. M., & Meire, R. O. (2021). Atmospheric occurrence of organochlorine pesticides and inhalation cancer risk in urban areas at southeast Brazil. Environmental Pollution, 271, 116359. https://doi.org/10.1016/j.envpol.2020.116359

    Article  CAS  Google Scholar 

  • Guo, Z. B., Shi, L., Chen, S., Jiang, W. J., Wei, Y., Rui, M. L., & Zeng, G. (2016). Sulfur isotopic fractionation and source appointment of PM2.5 in Nanjing region around the second session of the Youth Olympic Games. Atmospheric Research, 174, 9–17. https://doi.org/10.1016/j.atmosres.2016.01.011

    Article  CAS  Google Scholar 

  • Henríquez-Hernández, L. A., Carretón, E., Camacho, M., Montoya-Alonso, J. A., Boada, L. D., Bernal Martín, V., Falcón Cordón, Y., Falcón Cordón, S., Zumbado, M., & Luzardo, O. P. (2017). Potential role of pet cats as a sentinel species for human exposure to flame retardants. Frontiers in Veterinary Science, 4, 79.

    Article  Google Scholar 

  • Herrick, R. F., McClean, M. D., Meeker, J. D., Baxter, L. K., & Weymouth, G. A. (2004). An unrecognized source of PCB contamination in schools and other buildings. Environmental Health Perspectives, 112, 1051–1053. https://doi.org/10.1289/ehp.6912

    Article  CAS  Google Scholar 

  • Jung, C. C., & Su, H. J. (2020). Chemical and stable isotopic characteristics of PM2.5 emitted from Chinese cooking. Environmental Pollution, 267, 115577. https://doi.org/10.1016/j.envpol.2020.115577

    Article  CAS  Google Scholar 

  • Kang, Y., Cheung, K. C., Cai, Z. W., & Wong, M. H. (2011). Chemical and bioanalytical characterization of dioxins in indoor dust in Hong Kong. Ecotoxicology and Environmental Safety, 74, 947–952. https://doi.org/10.1016/j.ecoenv.2011.01.006

    Article  CAS  Google Scholar 

  • Khairy, M., Muir, D., Teixeira, C., & Lohmann, R. (2015). Spatial distribution, air–water fugacity ratios and source apportionment of polychlorinated biphenyls in the lower Great Lakes Basin. Environmental Science and Technology, 49, 13787–13797. https://doi.org/10.1021/acs.est.5b00186

    Article  CAS  Google Scholar 

  • Kraft, M., Sievering, S., Grün, L., & Rauchfuss, K. (2018). Mono-, di-, and trichlorinated biphenyls (PCB 1-PCB 39) in the indoor air of office rooms and their relevance on human blood burden. Indoor Air, 28, 441–449. https://doi.org/10.1111/ina.12448

    Article  CAS  Google Scholar 

  • Kurwadkar, S., Sethi, S.S., Mishra, P., Ambade, B., (2022). Unregulated discharge of wastewater in the Mahanadi River Basin: Risk evaluation due to occurrence of polycyclic aromatic hydrocarbon in surface water and sediments. Mar. Pollut. Bull. 179, 113686. https://doi.org/10.1016/j.marpolbul.2022.113686

    Article  CAS  Google Scholar 

  • Li, J., Zhang, G., Guo, L. L., Xu, W. H., Li, X. D., Lee, C. S. L., Ding, A. J., & Wang, T. (2007). Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport. Atmospheric Environment, 41, 3889–3903. https://doi.org/10.1016/j.atmosenv.2006.12.052

    Article  CAS  Google Scholar 

  • Li, Q., Lu, Y., Wang, P., Wang, T., Zhang, Y., Suriyanarayanan, S., Liang, R., Baninla, Y., & Khan, K. (2018). Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. Environmental Pollution, 239, 233–241. https://doi.org/10.1016/j.envpol.2018.03.055

    Article  CAS  Google Scholar 

  • Lin, T., Li, J., Xu, Y., Liu, X., Luo, C., Cheng, H., Chen, Y., & Zhang, G. (2012). Organochlorine pesticides in seawater and the surrounding atmosphere of the marginal seas of China: Spatial distribution, sources and air–water exchange. Science of the Total Environment, 435, 244–252. https://doi.org/10.1016/j.scitotenv.2012.07.028

    Article  CAS  Google Scholar 

  • Liu, X., Chen, Z., Wu, J., Cui, Z., & Su, P. (2020a). Sedimentary polycyclic aromatic hydrocarbons (PAHs) along the mouth bar of the Yangtze River Estuary: Source, distribution, and potential toxicity. Marine Pollution Bulletin, 159, 111494. https://doi.org/10.1016/j.marpolbul.2020.111494

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, G., Li, J., Yu, L. L., Xu, Y., Li, X. D., Kobara, Y., & Jones, K. C. (2009). Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities. Environmental Science and Technology, 43, 1316–1321. https://doi.org/10.1021/es802371n

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, G. J., Yousaf, B., Zhang, J. M., & Zhou, L. (2020b). Carbon fractionation and stable carbon isotopic fingerprint of road dusts near coal power plant with emphases on coal-related source apportionment. Ecotoxicology and Environmental Safety, 202, 110888.

    Article  CAS  Google Scholar 

  • Lu, Y., Wu, P., Zhu, X., Jiang, Y., Yin, Z., & Ma, X. (2018). Comparison of surface urban heat island (SUHI) at landsat scale in Hefei, China: Diurnal, seasons and drivers. In Fifth international workshop on Earth observation and remote sensing applications (EORSA) (pp. 1–4).

  • Lucattini, L., Poma, G., Covaci, A., de Boer, J., Lamoree, M. H., & Leonards, P. E. G. (2018). A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere, 201, 466–482. https://doi.org/10.1016/j.chemosphere.2018.02.161

    Article  CAS  Google Scholar 

  • Mao, S. D., Zhang, G., Li, J., Geng, X. F., Wang, J. Q., Zhao, S. Z., Cheng, Z. N., Xu, Y., Li, Q. L., & Wang, Y. (2020). Occurrence and sources of PCBs, PCNs, and HCB in the atmosphere at a regional background site in east China: Implications for combustion sources. Environmental Pollution, 262, 114267. https://doi.org/10.1016/j.envpol.2020.114267

    Article  CAS  Google Scholar 

  • Marek, R. F., Thome, P. S., Herkert, N. J., Awad, A. M., & Hornbuckle, K. C. (2017). Airborne PCBs and OH-PCBs inside and outside urban and rural US schools. Environmental Science and Technology, 51, 7853–7860. https://doi.org/10.1021/acs.est.7b01910

    Article  CAS  Google Scholar 

  • Meeker, J. D., Altshul, L., & Hauser, R. (2007). Serum PCBs, p, p′-DDE and HCB predict thyroid hormone levels in men. Environmental Research, 104, 296–304. https://doi.org/10.1016/j.envres.2006.11.007

    Article  CAS  Google Scholar 

  • Meng, G., Nie, Z., Feng, Y., Wu, X., Yin, Y., & Wang, Y. (2016). Typical halogenated persistent organic pollutants in indoor dust and the associations with childhood asthma in Shanghai, China. Environmental Pollution, 211, 389–398. https://doi.org/10.1016/j.envpol.2015.12.006

    Article  CAS  Google Scholar 

  • Prithiviraj, B., & Chakraborty, P. (2020). Atmospheric polychlorinated biphenyls from an urban site near informal electronic waste recycling area and a suburban site of Chennai city, India. Science of the Total Environment, 710, 135526. https://doi.org/10.1016/j.scitotenv.2019.135526

    Article  CAS  Google Scholar 

  • Programme, U.N.E., Priddle, J., 2002. Regionally based assessment of persistent toxic substances. Antarctica regional report (By J. Priddle). UNEP Chemicals.

  • Qiao, L., Zheng, X.-B., Zheng, J., Chen, S.-J., Zhong, C.-Q., Chen, J.-H., Yang, Z.-Y., & Mai, B.-X. (2019). Legacy and currently used organic contaminants in human hair and hand wipes of female e-waste dismantling workers and workplace dust in south China. Environmental Science & Technology, 53, 2820–2829. https://doi.org/10.1021/acs.est.8b05503

    Article  CAS  Google Scholar 

  • Rauert, C., Harrad, S., Stranger, M., & Lazarov, B. (2015). Test chamber investigation of the volatilization from source materials of brominated flame retardants and their subsequent deposition to indoor dust. Indoor Air, 25, 393–404. https://doi.org/10.1111/ina.12151

    Article  CAS  Google Scholar 

  • Reyes, D. R., Rosario, O., Rodriguez, J. F., & Jimenez, B. D. (2000). Toxic evaluation of organic extracts from airborne particulate matter in Puerto Rico. Environmental Health Perspectives, 108, 635–640. https://doi.org/10.1289/ehp.00108635

    Article  CAS  Google Scholar 

  • Sahu, V., Elumalai, S. P., Gautam, S., Singh, N. K., & Singh, P. (2018). Characterization of indoor settled dust and investigation of indoor air quality in different micro-environments. International Journal of Environmental Health Research, 28, 419–431. https://doi.org/10.1080/09603123.2018.1481498

    Article  CAS  Google Scholar 

  • Sawlani, R., Agnihotri, R., & Sharma, C. (2021). Chemical and isotopic characteristics of PM2.5 over New Delhi from September 2014 to May 2015: Evidences for synergy between air-pollution and meteorological changes. Science of the Total Environment, 763, 142966. https://doi.org/10.1016/j.scitotenv.2020.142966

    Article  CAS  Google Scholar 

  • Sevastyanova, O., Binkova, B., Topinka, J., Sram, R. J., Kalina, I., Popov, T., Novakova, Z., & Farmer, P. B. (2007). In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: Human cell lines. Mutation Research, 620, 123–134. https://doi.org/10.1016/j.mrfmmm.2007.03.002

    Article  CAS  Google Scholar 

  • Shen, M., Liu, G., Yin, H., & Zhou, L. (2020). Distribution, sources and health risk of PAHs in urban air-conditioning dust from Hefei, East China. Ecotoxicology and Environmental Safety, 194, 110442. https://doi.org/10.1016/j.ecoenv.2020.110442

    Article  CAS  Google Scholar 

  • Shin, H. M., McKone, T. E., Tulve, N. S., Clifton, M. S., & Bennett, D. H. (2013). Indoor residence times of semivolatile organic compounds: Model estimation and field evaluation. Environmental Science and Technology, 47, 859–867. https://doi.org/10.1021/es303316d

    Article  CAS  Google Scholar 

  • Shunthirasingham, C., Gawor, A., Hung, H., Brice, K. A., Su, K., Alexandrou, N., Dryfhout-Clark, H., Backus, S., Sverko, E., & Shin, C. (2016). Atmospheric concentrations and loadings of organochlorine pesticides and polychlorinated biphenyls in the Canadian Great Lakes Basin (GLB): Spatial and temporal analysis (1992–2012). Environmental Pollution, 217, 124–133. https://doi.org/10.1016/j.envpol.2016.01.039

    Article  CAS  Google Scholar 

  • Sohail, M., Eqani, S. A. M. A. S., Podgorski, J., Bhowmik, A. K., Mahmood, A., Ali, N., Sabo-Attwood, T., Bokhari, H., & Shen, H. Q. (2018). Persistent organic pollutant emission via dust deposition throughout Pakistan: Spatial patterns, regional cycling and their implication for human health risks. Science of the Total Environment, 618, 829–837. https://doi.org/10.1016/j.scitotenv.2017.08.224

    Article  CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007). A study to characterize the suspended particulate matter in an indoor environment in Delhi, India. Building and Environment, 42, 2046–2052. https://doi.org/10.1016/j.buildenv.2006.03.007

    Article  Google Scholar 

  • Tan, J., Cheng, S. M., Loganath, A., Chong, Y. S., & Obbard, J. P. (2007). Selected organochlorine pesticide and polychlorinated biphenyl residues in house dust in Singapore. Chemosphere, 68, 1675–1682. https://doi.org/10.1016/j.chemosphere.2007.03.051

    Article  CAS  Google Scholar 

  • Ulrich, E. M., & Hites, R. A. (1998). Enantiomeric ratios of chlordane-related compounds in air near the Great Lakes. Environmental Science and Technology, 32, 1870–1874. https://doi.org/10.1021/es970956i

    Article  CAS  Google Scholar 

  • Vorhees, D. J., Cullen, A. C., & Altshul, L. M. (1999). Polychlorinated biphenyls in house dust and yard soil near a superfund site. Environmental Science & Technology, 33, 2151–2156. https://doi.org/10.1021/es9812709

    Article  CAS  Google Scholar 

  • Wang, X., Banks, A. P., He, C., Drage, D. S., Gallen, C. L., Li, Y., Li, Q., Thai, P. K., & Mueller, J. F. (2019). Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia–occurrence, sources and exposure risks. Science of the Total Environment, 693, 133588. https://doi.org/10.1016/j.scitotenv.2019.133588

    Article  CAS  Google Scholar 

  • Weschler, C. J., & Nazaroff, W. W. (2008). Semivolatile organic compounds in indoor environments. Atmospheric Environment, 42, 9018–9040. https://doi.org/10.1016/j.atmosenv.2008.09.052

    Article  CAS  Google Scholar 

  • Whitehead, T. P., Brown, F. R., Metayer, C., Park, J. S., Does, M., Dhaliwal, J., Petreas, M. X., Buffler, P. A., & Rappaport, S. M. (2014). Polychlorinated biphenyls in residential dust: Sources of variability. Environmental Science and Technology, 48, 157–164. https://doi.org/10.1021/es403863m

    Article  CAS  Google Scholar 

  • Wurl, O., & Obbard, J. P. (2005). Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore’s coastal marine sediments. Chemosphere, 58, 925–933. https://doi.org/10.1016/j.chemosphere.2004.09.054

    Article  CAS  Google Scholar 

  • Xue, H., Liu, G., Zhang, H., Hu, R., & Wang, X. (2019). Elemental composition, morphology and sources of fine particulates (PM2. 5) in Hefei city, China. Aerosol and Air Quality Research, 19, 1688–1696. https://doi.org/10.4209/aaqr.2018.09.0341

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Li, J., & Zhang, G. (2019). Examining the role of total organic carbon and black carbon in the fate of legacy persistent organic pollutants (POPs) in indoor dust from Nepal: Implication on human health. Ecotoxicology and Environmental Safety, 175, 225–235. https://doi.org/10.1016/j.ecoenv.2019.03.048

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Li, J., Zhang, G., & Breivik, K. (2017). Possible emissions of POPs in plain and hilly areas of Nepal: Implications for source apportionment and health risk assessment. Environmental Pollution, 220, 1289–1300. https://doi.org/10.1016/j.envpol.2016.10.102

    Article  CAS  Google Scholar 

  • Yang, B., Zhou, L., Xue, N., Li, F., Li, Y., Vogt, R. D., Cong, X., Yan, Y., & Liu, B. (2013). Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 443, 31–39. https://doi.org/10.1016/j.scitotenv.2012.10.094

    Article  CAS  Google Scholar 

  • Yang, Y. Y., Liu, L. Y., Xiong, Y. Y., Zhang, G. M., Wen, H. M., Lei, J., Guo, L. L., & Lyu, Y. L. (2016). A comparative study on physicochemical characteristics of household dust from a metropolitan city and a remote village in China. Atmospheric Pollution Research, 7, 1090–1100. https://doi.org/10.1016/j.apr.2016.06.009

    Article  Google Scholar 

  • Yu, B. F., Hu, Z. B., Liu, M., Yang, H. L., Kong, Q. X., & Liu, Y. H. (2009). Review of research on air-conditioning systems and indoor air quality control for human health. International Journal of Refrigeration-Revue Internationale Du Froid, 32, 3–20. https://doi.org/10.1016/j.ijrefrig.2008.05.004

    Article  Google Scholar 

  • Yuan, B., Tay, J. H., Padilla-Sanchez, J. A., Papadopoulou, E., Haug, L. S., & de Wit, C. A. (2021). Human exposure to chlorinated paraffins via inhalation and dust ingestion in a Norwegian cohort. Environmental Science and Technology, 55, 1145–1154. https://doi.org/10.1021/acs.est.0c05891

    Article  CAS  Google Scholar 

  • Zhou, J., Liu, G., Zhang, H., Liu, K., & Arif, M. (2021b). Pollution characterization and source identification of nitrogen-containing species in fine particulates: A case study in Hefei city, east China. Chemosphere, 285, 131316.

    Article  CAS  Google Scholar 

  • Zhou, J., You, Y., Bai, Z., Hu, Y., Zhang, J., & Zhang, N. (2011). Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Science of the Total Environment, 409, 452–459. https://doi.org/10.1016/j.scitotenv.2010.10.022

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, G., Shen, M., Hu, R., & Liu, Y. (2020). Source identification of heavy metals and stable carbon isotope in indoor dust from different functional areas in Hefei, China. Science of the Total Environment, 710, 135599. https://doi.org/10.1016/j.scitotenv.2019.135599

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, G., Shen, M., Hu, R., Sun, M., & Liu, Y. (2019). Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environmental Pollution, 251, 839–849. https://doi.org/10.1016/j.envpol.2019.05.058

    Article  CAS  Google Scholar 

  • Zhou, L., Liu, G., Shen, M., Liu, Y., & Lam, P. K. S. (2021a). Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates. Chemosphere, 272, 129952. https://doi.org/10.1016/j.chemosphere.2021.129952

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NO. 41972166) and Key research and development projects of Anhui Province (1804b06020358). We wish to thank the editor and the reviewers for their helpful suggestions and comments that significantly improve the research.

Funding

The study was supported by the National Natural Science Foundation of China (No. 41972166) and Key research and development projects of Anhui Province (1804b06020358).

Author information

Authors and Affiliations

Authors

Contributions

MS: Methodology, software, writing—original draft. GL: Supervision, Funding acquisition, Project administration, Resources. LZ: Investigation, Sample Collecting. HY: Software, Experiment. MA: English editing, picture beautification and investigation. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Guijian Liu.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Animal and human rights

No animals were involved in the study.

Consent to participate

No human participants were involved in this study.

Consent for publication

No human participants were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Liu, G., Zhou, L. et al. Comparison of pollution status and source apportionment for PCBs and OCPs of indoor dust from an industrial city. Environ Geochem Health 45, 2473–2494 (2023). https://doi.org/10.1007/s10653-022-01360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01360-3

Keywords

Navigation