Skip to main content
Log in

Intra-soil waste recycling provides safety of environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Amelioration and remediation technology was developed for phosphogypsum utilization in Haplic Chernozem of South-European facies (Rostov Region). The technology comprises phosphogypsum dispersed application into the soil layer of 20–45 cm during intra-soil milling. In the model experiment, the phosphogypsum doses 0 (control), 10, 20, and 40 t ha−1 were studied. The Cd thermodynamic forms in soil solution were calculated via the developed mathematical chemical-thermodynamic model and program ION–3. The form of ion in soil solution (or water extract) was considered accounting the calcium-carbonate equilibrium (CCE) and association of ion pairs CaCO30; CaSO40, MgCO30, MgSO40, CaHCO3+, MgHCO3+, NaCO3, NaSO4, CaOH+, MgOH+. For calculation of the equilibrium of microelements concentration in soil solution ion including heavy metals (HMs), the coefficient of microelement association kas was proposed. According to calculations, Cd2+ ion in soil solution was mostly bounded to associates CdOH+, partly to associates CdCO30 and CdHCO3+. The calculated kas of Cd was 1.24 units in the control option of experiment and decreased to 0.95 units at phosphogypsum dose 40 t ha−1. The ratio of “active [Cd2+] to total Cd” reduced from 33.5% in control option to 28.0% in the option of phosphogypsum dose 40 t ha−1. The biogeochemical barrier for penetration of HMs from soil to plant roots was high after application of phosphogypsum. According to calculation by ION–3, the standard soil environmental limitations overestimate the toxicity of Cd in soil solution. New decision for intra-soil milling and simultaneous application of phosphogypsum was developed to provide the environmentally safe waste recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  • Envirolink 73 – HBRC 9 – soil cadmium Report prepared for Hawkes Bay Regional Council August 2006 http://www.envirolink.govt.nz/PageFiles/124/73-Hbrc9-CadmiumInSoil_scienceReport.pdf

  • Environment Agency (2009). Soil Guideline Values for cadmium in soil Science Report SC050021 / Cadmium SGV, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/313899/SCHO0709BQRO-e-e.pdf

  • Akanova, N. I. (2013). Neutralized phosphogypsum – a promising agrochemical means of agriculture intensifying (based on the materials of EuroChem OJSC workshops). Fertility, 1, 2–7.

    Google Scholar 

  • Akulova, T.V., Maltsev, A.V., Kalinichenko ,V.P., Eremenko, V.N. (2010). Occurrence and abundance of earthworms in biotopes with different chemical load at Crop Protection. Proceedings of higher educational institutions. North Caucasus region. Ser.: Nat. Sci., 3, 81–84.

  • Amari, T., Ghnaya, T., & Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99–110.

    Article  CAS  Google Scholar 

  • Batukaev, A. A., Endovitsky, A. P., Andreev, A. G., Kalinichenko, V. P., Minkina, T. M., Dikaev, Z. S., Mandzhieva, S. S., & Sushkova, S. N. (2016). Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink. Solid Earth, 7(2), 415–423.

    Article  Google Scholar 

  • Batukaev, A., Endovitsky, A., Kalinichenko, V., Mischenko, N., Minkina, T., Mandzhieva, S., Sushkova, S., Bakoyev, S., Rajput, V., Shipkova, G., & Litvinov, Yu. (2017). Cadmium status in chernozem of the Krasnodar Krai (Russia) after application of phosphogypsum. Proceedings Estonian Academy of Science., 66(4), 501–515. https://doi.org/10.3176/proc.2017.4.17

    Article  Google Scholar 

  • Bech, J., Korobova, E., Abreu, M., Bini, C., Chon, H. T., & Pérez-Sirvent, C. (2014). Soil pollution and reclamation. Journal of Geochemical Exploration, 147, 77–79.

    Article  CAS  Google Scholar 

  • Belyuchenko, I. S. (2014). Features of mineral waste and the expediency of their use in the formation of complex composts. Kuban’SU Scientific Journal, 101(07), 875–895, #1011407054. http://ej.kubagro.ru/2014/07/pdf/54.pdf, https://sj.kubsau.ru/authors/3153/page-2/sort-title-asc#articlesList.

  • Bezuglova, O. S. (2019). Current state of the Chernozems of the Rostov Region and problems of monitoring. Collection of Scientific Papers of the State Nikitsky Botanical Garden, 148, 34–41.

    Google Scholar 

  • Bezuglova, O. S., Gorbov, S. N., Tischenko, S. A., Aleksikova, A. S., Tagiverdiev, S. S., Sherstnev, A. K., & Dubinina, M. N. (2016). Accumulation and migration of heavy metals in soils of the Rostov region, south of Russia. Journal of Soils and Sediments, 16, 1203–1213. https://doi.org/10.1007/s11368-015-1165-8

    Article  CAS  Google Scholar 

  • Cadmium in fertilizers (2000). Risks from cadmium accumulation in agricultural soils due to the use of fertilisers containing cadmium Model estimations October 2000. http://ec.europa.eu/enterprise/sectors/chemicals/files/reports/denmark_en.pdf

  • Carter, M. R., & Gregorich, E. G. (2007). Soil Sampling and Methods of Analysis (2nd ed.). CRC Press.

    Book  Google Scholar 

  • Casacubertaa, N., Masqué, P., Garcia-Orellana, J., Bruach, J. M., Anguita, M., Gasa, J., Villa, M., Hurtado, S., & Garcia-Tenorio, R. (2009). Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations. Journal of Hazardous Materials, 170(2–3), 814–823. https://doi.org/10.1016/j.jhazmat.2009.05.037

    Article  CAS  Google Scholar 

  • Coleman, D. C., Callaham, Jr. M. A., & Crossley, Jr. D. A. (2018). Chapter 3 – Secondary production: Activities of heterotrophic organisms – microbes. In: Fundamentals of Soil Ecology (Third Edition) (pp 47–76). London, United Kingdom : Academic Press, an imprint of Elsevier. https://www.worldcat.org/title/fundamentals-of-soil-ecology/oclc/1012882312.

  • Contaminants and the Soil Environment in the Australasia-Pacific Region. R. Naidu, R.S., Kookana, D.P., Oliver,S., Rogers, M.J., Ed; McLaughlin Kluwer Academic Publishers, 1996.

  • Crusciol, C. A. C., Artigiani, A. C. C. A., Arf, O., Filho, A. C. A. C., Soratto, R. P., Nascente, A. S., & Alvarez, R. C. F. (2016). Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. CATENA, 137, 87–99.

    Article  CAS  Google Scholar 

  • Dastyar, W., Zhao, M., Yuan, W., Li, H., Ting, Z. J., Ghaedi, H., Yuan, H., Li, X., & Wang, W. (2019). Effective pretreatment of heavy metal-contaminated biomass using a low-cost ionic liquid (Triethylammonium Hydrogen Sulfate): Optimization by response surface methodology-box Behnken design. ACS Sustainable Chemistry and Engineering, 7(13), 11571–11581. https://doi.org/10.1021/acssuschemeng.9b01457

    Article  CAS  Google Scholar 

  • De Gryze, S., Jassogne, L., Six, J., Bossuyt, H., Wevers, M., & Merckx, R. (2006). Pore structure changes during decomposition of fresh residue: X-ray tomography analysis. Geoderma, 134, 82–96.

    Article  Google Scholar 

  • Enamorado, S., Abril, J. M., Delgado, A., Más, J. L., Polvillo, O., & Quintero, J. M. (2014). Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. Journal of Hazardous Materials, 266, 122–131.

    Article  CAS  Google Scholar 

  • Endovitsky, A. P., Batukaev, A. A., Minkina, T. M., Kalinitchenko, V. P., Mandzhieva, S. S., Sushkova, S. N., Mischenko, N. A., Bakoyev, S. Y., Zarmaev, A. A., & Jusupov, V. U. (2017). Ions association in soil solution as the cause of lead mobility and availability after application of phosphogypsum to chernozem. Journal of Geochemical Exploration, 182(B), 185–192. https://doi.org/10.1016/j.gexplo.2016.08.018

    Article  CAS  Google Scholar 

  • Endovitsky, A. P., Kalinichenko, V. P., & Minkina, T. M. (2015). Carbonate calcium equilibrium in soil solution as a driver of heavy metals mobility. International Journal of Environment Problems, 2(2), 136–153.

    Google Scholar 

  • Fang, L., Yan, F., Chen, J., Shen, X., & Zhang, Z. (2020). Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash. ACS Sustainable Chemistry and Engineering, 8(17), 6611–6621. https://doi.org/10.1021/acssuschemeng.9b06861

    Article  CAS  Google Scholar 

  • Gázquez, M. J., Mantero, J., Mosqueda, F., Bolívar, J. P., & García-Tenorio, R. (2014). Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration. Journal of Environmental Radioactivity, 137, 79–87.

    Article  Google Scholar 

  • Glazko, V. I., & Glazko, T. T. (2015). Conflicts of biosphere and agroecosystems. International Journal of Environmental Problems, 1(1), 4–16.

    Article  Google Scholar 

  • Goswami, M., Nand, S. (2015). Management of Phosphogypsum in India Proc. of The IFA Global Safety Summit. Canada. Vancouver.

  • Grassian, V. H. (2018). Physical chemistry of environmental interfaces: Aerosols, nanomaterials and indoor surfaces. The Chemist, 91, 13–17.

    Google Scholar 

  • Guidelines for the Safe Application of Biosolids to Land in New Zeland. NZWWA. 2003, https://www.mfe.govt.nz/sites/default/files/laws/standards/contaminants-in-soil/submissions/submission-2-david-renouf.pdf

  • Hentati, O., Abrantes, N., Caetano, A. L., Bouguerra, S., Gonçalves, F., Römbke, J., & Pereira, R. (2015). Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. Journal of Hazardous Materials, 294, 80–89.

    Article  CAS  Google Scholar 

  • Hideo, M. C. C., & Crusciol, C. A. C. (2016). Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties. European Journal of Agronomy, 74, 119–132.

    Article  Google Scholar 

  • Hilton, J. (2010). Phosphogypsum (PG): Uses and Current Handling Practices Worldwide. https://www.parlimen.gov.my/images/webuser/jkuasa%20lamp/Memorandum/Kertas%20kerja%20Phosphogypsum%20(PG)%20-%20Uses%20and%20Current%20Handling%20Practices%20Worldwide/Phosphogypsum%20(PG)%20-%20Uses%20&%20Current%20Handling%20Practices%20Worldwide%20-%20Julian%20Hilton.pdf

  • Hilton, J. (2015). Building Reputational Capital: the Independent Global Phosphogypsum Study and the IFA PG Handbook IFA Global Safety Summit. Canada: Vancouver, 23–26.

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. http://www.fao.org/3/i3794en/I3794en.pdf.

  • Jiang, N., Cai, D., He, L., Zhong, N., Wen, H., Zhang, X., & Wu, Z. (2015). A facile approach to remediate the microenvironment of saline-alkali soil. ACS Sustainable Chemistry and Engineering, 3(2), 374–380. https://doi.org/10.1021/sc500785e

    Article  CAS  Google Scholar 

  • Kalinichenko, V.P. Device for entering a substance at intra-soil rotary hoeing. Patent RU № 2387115 C2, published on 04/27/2010.

  • Kalinichenko, V. P. (2017). Effective use of phosphogypsum in agriculture. Bulletin of Plant Nutrition, 1, 2–33.

    Google Scholar 

  • Kalinichenko, V.P., Glinushkin, A.P., Sokolov, M.S., Kozyrev S.G., Savostyanov A.P., Ilin V.B. Complex of utilization of gasification wastes. Patent RU № 2692718 C1, published on 26/06/2019.

  • Kalinichenko, V. P., Glinushkin, A. P., Sokolov, M. S., Zinchenko, V. E., Minkina, T. M., Mandzhieva, S. S., Sushkova, S. N., Makarenkov, D. A., Bakoyev, S. Y., & Ilina, L. P. (2018). Impact of soil organic matter on calcium carbonate equilibrium and forms of Pb in water extracts from Kastanozem complex. Journal of Soils Sediments, 19(6), 2717–2728.

    Article  Google Scholar 

  • Kalinichenko V.P., Il'in V.B., Endovitsky A.P., Chernenko V.V. Method for extraction of substances from the fine system. Patent RU № 2464967 C2, published on 10/27/2012. https://new.fips.ru/Archive/PAT/2012FULL/2012. 10. 27/DOC/RUNWC2/000/000/002/464/967/DOCUMENT.PDF

  • Kalinichenko, V.P., Il'in, V.B., Endovitsky, A.P., Chernenko, V.V. Method of synthesis of the substance inside the fine system. Patent RU №2476055 C2, published on 02/27/2013.

  • Kalinichenko, V. P., Sharshak, V. K., Mironchenko, S. F., Chernenko, V. V., Ladan, E. P., Genev, E. D., Illarionov, V. V., Udalov, A. V., Udalov, V. V., & Kippel, E. V. (2014). Changes in the properties of soils in a solonetz soil complex thirty years after reclamation. Eurasian Soil Science, 47(4), 319–333.

    Article  Google Scholar 

  • Kalinichenko, V.P., Starcev, V.F., Batukaev, A.A., Zarmaev, A.A. Device for slaughter of animals, slaughter product processing and slaughter waste recycling. Patent RU 2584022 C2, published on 05/20/2016. https://new.fips.ru/Archive4/PAT/2016FULL/2016.05.20/DOC/RUNWC2/000/000/002/584/022/DOCUMENT.PDF

  • Kalinitchenko, V.P. Device for rotary subsurface tillage. Patent RU №2475005 C2, published on 02/20/2013. https://new.fips.ru/Archive/PAT/2013FULL/2013.02.20/DOC/RUNWC2/000/000/002/475/005/DOCUMENT.PDF

  • Kalinitchenko, V. P. (2016). Optimizing the matter flow in biosphere and the climate of the Earth at the stage of technogenesis by methods of biogeosystem technique (problem-analytical review). International Journal of Environmental Problems, 4(2), 99–130.

    Google Scholar 

  • Kalinitchenko, V. P. (2017). Renewal of energy and life in the biosphere. European Journal of Renewable Energy, 2(1), 3–28.

    Google Scholar 

  • Kalinitchenko, V., Glinushkin, A., Dubenok, N., Minkina, T., Chernenko, V., & Rykhlik, A. (2020). Biogeosystem technique paradigm for the world water scarcity surmounting. ACS Fall Meeting San Francisco. https://doi.org/10.1021/scimeetings.0c06991

    Article  Google Scholar 

  • Kalinitchenko, V., Glinushkin, A., Meshalkin, V., Savostyanov, A., Gudkov, S., Minkina, T., Makarenkov, D., & Ilyina, L. (2020c). Biogeosystem technique for the biofuel (and synthesis gas, methane) environmentally safe expanded production. ACS Fall Meeting, San Francisco. https://doi.org/10.1021/scimeetings.0c06992

    Article  Google Scholar 

  • Kalinitchenko, V. P., Glinushkin, A. P., Minkina, T. M., Mandzhieva, S. S., Sushkova, S. N., Sukovatov, V. A., & Il’ina, L.P., Makarenkov, D.A. . (2020a). Chemical soil-biological engineering theoretical foundations, technical means, and technology for environmentally safe intra-soil waste recycling and long-term higher soil productivity. ACS Omega, 5(28), 17553–17564. https://doi.org/10.1021/acsomega.0c02014

    Article  CAS  Google Scholar 

  • Kalinitchenko, V. P., Glinushkin, A. P., Swidsinski, A. V., Minkina, T. M., Andreev, A. G., Mandzhieva, S. S., Sushkova, S. N., Makarenkov, D. A., Iljina, L. P., Chernenko, V. V., Zamulina, I. V., Larin, G. S., Zavalin, A. A., & Gudkov, S. V. (2021). Thermodynamic mathematical model of the Kastanozem complex and new principles of sustainable semiarid protective silviculture management. Environmental Research, 194, 110605. https://doi.org/10.1016/j.envres.2020.110605

    Article  CAS  Google Scholar 

  • Kamjunke, N., Hertkorn, N., Harir, M., Schmitt-Kopplin, P., Griebler, Ch., Brauns, M., Weitere, M., & Herzsprung, P. (2019). Molecular change of dissolved organic matter and patterns of bacterial activity in a stream along a land-use gradient. Water Research, 164, 114919. https://doi.org/10.1016/j.watres.2019.114919

    Article  CAS  Google Scholar 

  • Kwasniewska, J. (2014). Molecular cytogenetics serves environmental monitoring In Abstract Book of the 3rd ScienceOne International Conference on Environmental Sciences, 25

  • Lapin, A. V., & Lyagushkin, A. P. (2014). The Kovdor apatite-francolite deposit as a prospective source of phosphate ore. Geology of Ore Deposits, 56(1), 61–80.

    Article  Google Scholar 

  • Lin, H. Chapter 2 – Understanding soil architecture and its functional manifestation across Scales. Part I: Overviews and Fundamentals. Hydropedology. Book 2012, pp 41–74.

  • Lisetskii, F., Marinina, O., & Stolba, V. F. (2015). Indicators of agricultural soil genesis under varying conditions of land use, steppe Crimea. Geoderma, 239–240, 304–316.

    Article  Google Scholar 

  • Lisetskii, F., Zelenskaya, E., & Rodionova, M. (2018). Geochemical features of fallow land in ancient plots in the chora of Chersonesos. Geosciences (Switzerland), 8(11), 410. https://doi.org/10.3390/geosciences8110410

    Article  CAS  Google Scholar 

  • Lurie, J. (1975). Handbook of Analytical Chemistry. Moscow: Mir Publishers.

    Google Scholar 

  • Maximum permissible concentrations of chemical substances in soil. Russian Health Standards 2.1.7.2042–06, 2006, http://ohranatruda.ru/ot_biblio/normativ/data_normativ/46/46590/

  • Mays, D. A., & Mortvedt, J. J. (1984). Crop response to soil applications of phosphogypsum. Journal of Environmental Quality, 15(1), 78–81.

    Article  Google Scholar 

  • Minkina, T. M., Endovitskii, A. P., Kalinichenko, V. P., & Fedorov, Y. A. (2012). Calcium carbonate equilibrium in the system water – soil. Southern Federal University.

    Google Scholar 

  • Minkina, T. M., Kalinichenko, V. P., Bakoev, S. Yu., Mandzhieva, S. S., Sushkova, S. N., Bauer, T. V., Zamulina, I. V., Voronov, M. B., & Burachevskaya, M. V. ION–3. (2016). Certificate of registration of the computer program RU 2016616075, 06.06.2016. Application No. 2016613589 dated 04.14.2016.

  • Mishchenko, N. A., Gromyko, E. V., Kalinichenko, V. P., Chernenko, V. V., & Larin, S. V. (2009). Ecological and recreational phosphogypsum recycling in chernozem on example of the Krasnodar Territory. Fertility, 6, 25–26.

    Google Scholar 

  • Moreno-Jiménez, E., Meharg, A. A., Smolders, E., Manzano, R., Becerra, D., Sánchez-Llerena, J., Albarrán, A., & López-Piñero, A. (2014). Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Science of the Total Environment, 485–486, 468–473. https://doi.org/10.1016/j.scitotenv.2014.03.106

    Article  CAS  Google Scholar 

  • Motuzova, G. V., Minkina, T. M., Karpova, E. A., Barsova, N. U., & Mandzhieva, S. S. (2014). Soil contamination with heavy metals as a potential and real risk to the environment. Journal of Geochemical Exploration, 144, 241–246.

    Article  CAS  Google Scholar 

  • Nayak, S., Mishra, C. S. K., Guru, B. C., & Rath, M. (2011). Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. Journal of Environmental Biology, 32(5), 613–617.

    Google Scholar 

  • Panov, V.D., Lurie, P.M., Larionov, Yu.A., (2006). Climate of the Rostov region yesterday, today, tomorrow. Rostov-on-Don. 489 p.

  • Pardo, T., Clemente, R., Epelde, L., Garbisu, C., & Bernal, M. P. (2014). Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of Hazardous Materials, 268, 68–76.

    Article  CAS  Google Scholar 

  • Peries, R., Gill, J.S. (2015). Subsoil manuring in the high rainfall zone: a practice for ameliorating subsoils for improved productivity. Proceedings of the 17th ASA Conference, 20 – 24 September 2015, Hobart, Australia.

  • PND F 16.1.42–04. (2004). The methodology for measuring the mass fraction of metals and metal oxides in powder soil samples by X-ray fluorescence analysis Russia. Moscow.

  • Saadaoui, E., Ghazel, N., Romdhane, Ch. B., & Massoudi, N. (2017). Phosphogypsum: Potential uses and problems – a review. International Journal of Environmental Studies, 74(4), 558–567. https://doi.org/10.1080/00207233.2017.1330582

    Article  CAS  Google Scholar 

  • Shein, E. V., Kharitonova, G. V., & Milanovsky, EYu. (2016). Aggregation of natural disperse formations: Value of organic matter, soluble salts and diatoms. Biogeosystem Technique, 7(1), 77–86.

    Google Scholar 

  • Shtiza, A., & Swennen, R. (2011). Appropriate sampling strategy and analytical methodology to address contamination by industry Part 2: Geochemistry and speciation analysis. Open Geosciences, 3(1), 53–70.

    Article  Google Scholar 

  • Sposito, G. (1989). The Chemistry of Soils. Oxford University Press.

    Google Scholar 

  • Sposito, G. (2013). Green water and global food security. Vadose Zone Journal, 12(4), 1–6.

    Article  Google Scholar 

  • Sukovatov, V.A. (2009). Duration of reclamation of the solonetzic complex of chestnut soils. Dissertation for the degree of candidate of agricultural sciences / Don State Agrarian University. Persianovska, 140 p.

  • Swidsinski A. (2019). The colonic bioreactor – a forerunner model for future biotechnology (function, role, products & management). Conference: Fifth International Conference of CIS IHSS on Humic Innovative Technologies "Humic substances and living systems". October 19 – 23, 2019, DOI: 10.36291 / HIT.2019.swidsinski.017.

  • Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90(8), 2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007

    Article  CAS  Google Scholar 

  • Tayibi, H., Choura, M., López, F.A., Alguacil, F.J., López-Delgado, A. (2012). Environmental impact and management of phosphogypsum (Review). Madrid. http://digital.csic.es/bitstream/10261/45241/3/Environmental%20impact%20and%20management%20of%20phosphogypsum.pdf

  • Tenno, T., Rikmann, E., Zekker, I., Tenno, Ta., Daija, L., & Mashirin, A. (2016). Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3–water–gas. Proceedings of the Estonian Academy of Sciences, 65(1), 68–77.

    Article  Google Scholar 

  • Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögelknabner, I. (2018). Microaggregates in soils Methodological advances in studying the soil-plant atmosphere gas exchange. Journal of Plant Nutrition Soil Science, 181(1), 104–136.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. Risk-Based Screening Table – Generic Tables. http://www2.epa.gov/risk/risk-based-screening-table-generic-tables (date of access 2020–01–30)

  • Withers, P. J. A., Sylvester-Bradley, R., Jones, D. L., Healey, J. R., & Talboys, P. J. (2014). Feed the crop not the soil: rethinking phosphorus management in the food chain. Environmental Science and Technology, 48(12), 6523–6530. https://doi.org/10.1021/es501670j

    Article  CAS  Google Scholar 

  • www.esdat.net Dutch Target and Intervention Values, 2000 (the New Dutch List), http://www.esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf

  • Xiong, T., Leveque, Th., Shahid, M., Foucault, Ya., Mombo, S., & Dumat, C. (2014). Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. Journal of Environmental Quality, 43(5), 1593–1600.

    Article  Google Scholar 

  • Yakovlev, A. S., Kaniskin, M. A., & Terekhova, V. A. (2013). Ecological evaluation of artificial soils treated with phosphogypsum. Eurasian Soil Science, 46(6), 697–703.

    Article  CAS  Google Scholar 

  • Zrelli, R. E., Rabaoui, L., Abda, H., Daghbouj, N., Pérez-López, R., Castet, S., Aigouy, Th., Bejaoui, N., & Courjault-Radé, P. (2019). Characterization of the role of phosphogypsum foam in the transport of metals and radionuclides in the Southern Mediterranean Sea. Journal of Hazardous Materials, 363, 258–267. https://doi.org/10.1016/j.jhazmat.2018.09.083

    Article  CAS  Google Scholar 

Download references

Funding

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0852–2020-0029) and Russian Foundation for Basic Research, project no. 18–29-25071.

Author information

Authors and Affiliations

Authors

Contributions

VPK contributed to conceptualization, formulation of a research problem, writing. APG contributed to data curation, writing—reviewing. TMM contributed to writing. SSM contributed to data processing, methodology, discussion. SNS contributed to analytical work, HPLC, data collection. VAS contributed to data processing. LPI conducted experiments. DAM contributed to visualization, statistical processing. AAZ contributed to methodology. TSD contributed to writing—review and editing. AIB conducted experiments, data collection. DVB conducted experiments, contributed to writing—reviewing.

Corresponding author

Correspondence to Valery P. Kalinitchenko.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest in this work.

Ethical approval

It is not applicable since the manuscript has not been involved in the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinitchenko, V.P., Glinushkin, A.P., Minkina, T.M. et al. Intra-soil waste recycling provides safety of environment. Environ Geochem Health 44, 1355–1376 (2022). https://doi.org/10.1007/s10653-021-01023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01023-9

Keywords

Navigation