Skip to main content
Log in

Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater quality in the alluvial plains of Punjab has special significance and needs great attention since it is the foremost source of drinking, irrigation and industrial uses. The present research work emphasizes the integrated hydrogeochemical and chemometric statistical approaches to appraise the geochemical processes and source apportionment of the groundwater in the alluvial plains of Jalandhar district, Punjab, India. The human health risk assessment was also performed to quantify the potential non-carcinogenic impacts of nitrate and fluoride on human health through ingestion of groundwater. For this purpose, 41 groundwater samples were collected from different groundwater abstraction units and analysed for pH, electrical conductivity, total dissolved solids, total hardness, total alkalinity and major ions (Ca2+, Mg2+, Na+, K+, HCO3, CO32−, SO42−, NO3, F, Cl and PO43−) using standard protocols. Drinking water quality index and Revelle index showed that groundwater samples fall under poor to unfit water class and salinization along the south-western portion of the study region shows poor water quality. The results of the hazard index (HIingestion) show 68% and 46.34% of the groundwater samples have HI > 1 for children and adults. The non-carcinogenic health risk assessment of nitrate (NO3) and fluoride (F) on the local population indicated that the children are more vulnerable through direct ingestion of drinking water than adults. Piper diagram and saturation index reveal that Ca2+–Mg2+–HCO3 is the dominant hydrochemical facies and oversaturated with calcite, dolomite and aragonite minerals in the groundwater. Gibbs diagrams, chloro-alkaline indices and scatter plots show that the hydrochemistry of the groundwater is mainly governed by aquifer material interaction such as weathering of silicate, carbonate rock, halite dissolution and cation exchange process. Chemometric statistical techniques revealed that the source identification of parameters such as Ca2+, Mg2+, Na+, K+, HCO3, CO3 and F is originated from geogenic factors, whereas NO3, SO42−, Cl and PO43− are from the anthropogenic origin. Therefore, urgent and efficient measures must be taken to combat groundwater pollution and reduce human health risk in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adimalla, N. (2018). Groundwater quality for drinking and irrigation purposes and potential health risks assessment: A case study from semi-arid region of South India. Exposure and Health. https://doi.org/10.1007/s12403-018-0288-8.

    Article  Google Scholar 

  • Adimalla, N., & Li, P. (2018). Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2018.1480353.

    Article  Google Scholar 

  • Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Processes,5, 363–383. https://doi.org/10.1007/s40710-018-0297-4.

    Article  CAS  Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2018a). Assessing groundwater hydrochemistry of Malwa Punjab India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3355-8.

    Article  Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2018b). Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environmental Science and Pollution Research,25, 25336–25347. https://doi.org/10.1007/s11356-018-2581-2.

    Article  CAS  Google Scholar 

  • Ahmed, M. F., Bin, Mokhtar M., Alam, L., et al. (2019). Non-carcinogenic health risk assessment of aluminium ingestion via drinking water in Malaysia. Exposure and Health. https://doi.org/10.1007/s12403-019-00297-w.

    Article  Google Scholar 

  • American Public Health Association. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

  • Aulakh, M. S., Khurana, M. P. S., & Singh, D. (2009). Water pollution related to agricultural, industrial, and urban activities, and its effects on the food chain: case studies from punjab. Journal of New Seeds,10, 112–137. https://doi.org/10.1080/15228860902929620.

    Article  Google Scholar 

  • Aydi, A. (2018). Evaluation of groundwater vulnerability to pollution using a GIS-based multi-criteria decision analysis. Groundwater for Sustainable Development,7, 204–211. https://doi.org/10.1016/j.gsd.2018.06.003.

    Article  Google Scholar 

  • Batabyal, A. K., & Gupta, S. (2017). Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis. Environmental Monitoring and Assessment,189, 369. https://doi.org/10.1007/s10661-017-6041-0.

    Article  CAS  Google Scholar 

  • Brindha, K., Pavelic, P., Sotoukee, T., et al. (2017). Geochemical characteristics and groundwater quality in the vientiane plain, Laos. Exposure and Health,9, 89–104. https://doi.org/10.1007/s12403-016-0224-8.

    Article  CAS  Google Scholar 

  • Bureau of Indian Standards (BIS) (2012). Specification for drinking water. 1S: 10500. Bureau of Indian Standards, New Delhi.

  • Causapé, J., Quílez, D., & Aragü, R. (2006). Groundwater quality in CR-V irrigation district (Bardenas I, Spain): Alternative scenarios to reduce off-site salt and nitrate contamination. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2006.03.004.

    Article  Google Scholar 

  • Central Ground Water Board (CGWB) (2012). Aquifer systems of India. 111.

  • CGWB (2014). Dynamic Groundwater Resources of India (As on March 31st 2011). Cent Gr Water Board Minist Water Resour River Dev Ganga Rejuvenation Gov India 299.

  • CGWB (2016). Ground Water Year Book, Punjab and Chandigarh. 186.

  • CGWB (2018). Aquifer mapping and management plan Jalandhar district, Punjab, CGWB, Ministry of Water Resources, Government of India.

  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of northwest China. Exposure and Health,9, 183–195. https://doi.org/10.1007/s12403-016-0231-9.

    Article  CAS  Google Scholar 

  • Das, B., & Kaur, P. (2001). Major ion chemistry of Renuka Lake and weathering processes, Sirmaur District, Himachal Pradesh, India. Environmental Geology,40, 908–917. https://doi.org/10.1007/s002540100268.

    Article  CAS  Google Scholar 

  • Davis, S. N., & DeWiest, R. J. M. (1967). Hydrology (2nd ed., p. 463). New York, London.

  • Dhillon, M. S., Kaur, S., & Aggarwal, R. (2019). Delineation of critical regions for mitigation of carbon emissions due to groundwater pumping in central Punjab. Groundwater for Sustainable Development,8, 302–308. https://doi.org/10.1016/j.gsd.2018.11.010.

    Article  Google Scholar 

  • Emenike, C. P., Tenebe, I. T., & Jarvis, P. (2018). Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk. Ecotoxicology and Environmental Safety, 156, 391–402.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gaofeng, Z., Yonghong, S., Chunlin, H., et al. (2010). Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China. Environmental Earth Sciences,60, 139–153. https://doi.org/10.1007/s12665-009-0175-5.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science,170, 1088–1090. https://doi.org/10.1126/science.170.3962.1088.

    Article  CAS  Google Scholar 

  • Government of Punjab (2016). STATISTICAL ABSTRACT OF Punjab, 2016.

  • He, S., & Wu, J. (2018). Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of huanhe formation in Wuqi County. Northwest China: Exposure and Health. https://doi.org/10.1007/s12403-018-0289-7.

    Book  Google Scholar 

  • He, X., Wu, J., & He, S. (2018). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1531693.

    Article  Google Scholar 

  • Herojeet, R., Rishi, M. S., & Kishore, N. (2015). Integrated approach of heavy metal pollution indices and complexity quantification using chemometric models in the Sirsa Basin, Nalagarh valley, Himachal Pradesh, India. Chinese J Geochemistry,34, 620–633. https://doi.org/10.1007/s11631-015-0075-1.

    Article  CAS  Google Scholar 

  • Herojeet, R., Rishi, M. S., Lata, R., & Dolma, K. (2017). Quality characterization and pollution source identification of surface water using multivariate statistical techniques, Nalagarh Valley, Himachal Pradesh, India. Applied Water Science,7, 2137–2156. https://doi.org/10.1007/s13201-017-0600-y.

    Article  CAS  Google Scholar 

  • Herojeet, R., Rishi, M. S., Lata, R., & Sharma, R. (2016). Application of environmetrics statistical models and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustainable Water Resources Management,2, 39–53. https://doi.org/10.1007/s40899-015-0039-y.

    Article  Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

    Google Scholar 

  • Hounslow, A. (2018). Water quality data: analysis and interpretation. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Jain, C. K., & Vaid, U. (2018). Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7422-6.

    Article  Google Scholar 

  • Karanth, K. R. (1987). Ground water assessment, development, and management. New York: Tata McGraw-Hill Pub co.

    Google Scholar 

  • Kaur, L., & Rishi, M. S. (2018). Integrated geospatial, geostatistical, and remote-sensing approach to estimate groundwater level in North-western India. Environmental Earth Sciences,77, 786. https://doi.org/10.1007/s12665-018-7971-8.

    Article  Google Scholar 

  • Kaur, L., Rishi, M. S., Sharma, S., et al. (2019). Hydrogeochemical characterization of groundwater in alluvial plains of River Yamuna in Northern India: an insight of controlling processes. Journal of King Saud University-Science. https://doi.org/10.1016/J.JKSUS.2019.01.005.

    Article  Google Scholar 

  • Keesari, T., Kulkarni, U. P., Deodhar, A., et al. (2014). Geochemical characterization of groundwater from an arid region in India. Environmental Earth Sciences,71, 4869–4888. https://doi.org/10.1007/s12665-013-2878-x.

    Article  CAS  Google Scholar 

  • Keesari, T., Ramakumar, K. L., Chidambaram, S., et al. (2016a). Understanding the hydrochemical behavior of groundwater and its suitability for drinking and agricultural purposes in Pondicherry area, South India—A step towards sustainable development. Groundwater for Sustainable Development,2–3, 143–153. https://doi.org/10.1016/j.gsd.2016.08.001.

    Article  Google Scholar 

  • Keesari, T., Sinha, U. K., Deodhar, A., et al. (2016b). High fluoride in groundwater of an industrialized area of Eastern India (Odisha): inferences from geochemical and isotopic investigation. Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-5874-0.

    Article  Google Scholar 

  • Keesari, T., Sinha, U. K., Kamaraj, P., & Sharma, D. A. (2019). Groundwater quality in a semi-arid region of India: Suitability for drinking, agriculture and fluoride exposure risk. Journal of Earth System Science, 128(2), 24.

    Article  Google Scholar 

  • Khanoranga, Khalid S. (2019). An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration,197, 14–26. https://doi.org/10.1016/j.gexplo.2018.11.007.

    Article  CAS  Google Scholar 

  • Kumar, P., Kumar, S., & Joshi, L. (2015). Problem of residue management due to rice wheat crop rotation in Punjab. In Socioeconomic and Environmental Implications of Agricultural Residue Burning (pp. 1–12). Springer, New Delhi.

  • Kumari, R., Datta, P. S., Rao, M. S., et al. (2018). Anthropogenic perturbations induced groundwater vulnerability to pollution in the industrial Faridabad District, Haryana India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7368-8.

    Article  Google Scholar 

  • Langelier, W.F. (1946). Chemical Equilibria in Water Treatment. In: Am. Water Work. Assoc. http://www.jstor.org/stable/23349196. Retrieved 5 Jan 2019.

  • Li, P., He, S., Yang, N., & Xiang, G. (2018a). Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: Implications to sustainable groundwater quality management on the Loess Plateau. Environmental Earth Sciences,77, 775. https://doi.org/10.1007/s12665-018-7968-3.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., Wu, J., & Ding, J. (2010). Geochemical modeling of groundwater in southern plain area of Pengyang County, Ningxia, China. Water Science and Engineering,3, 282–291. https://doi.org/10.3882/j.issn.1674-2370.2010.03.004.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., et al. (2016). Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Exposure and Health,8, 331–348. https://doi.org/10.1007/s12403-016-0193-y.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., Tian, R., et al. (2018b). Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the hongdunzi coal mine, northwest China. Mine Water and the Environment,37, 222–237. https://doi.org/10.1007/s10230-017-0507-8.

    Article  CAS  Google Scholar 

  • Liao, F., Wang, G., Shi, Z., et al. (2018). Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the poyang lake, east China. Exposure and Health,10, 211–227. https://doi.org/10.1007/s12403-017-0256-8.

    Article  CAS  Google Scholar 

  • Mahaqi, A., Moheghi, M. M., Mehiqi, M., & Moheghy, M. A. (2018). Hydrogeochemical characteristics and groundwater quality assessment for drinking and irrigation purposes in the Mazar-i-Sharif city North Afghanistan. Applied Water Science,8, 133. https://doi.org/10.1007/s13201-018-0768-9.

    Article  CAS  Google Scholar 

  • Margat, J., & Van der Gun, J. (2013). Groundwater around the world: A geographic synopsis. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Mayo, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. Journal of Hydrology,172, 31–59. https://doi.org/10.1016/0022-1694(95)02748-E.

    Article  CAS  Google Scholar 

  • Mohamed, I., Othman, F., Ibrahim, A. I. N., et al. (2015). Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia. Environmental Monitoring and Assessment,187, 1–12. https://doi.org/10.1007/s10661-014-4182-y.

    Article  CAS  Google Scholar 

  • Mukate, S., Panaskar, D., Wagh, V., et al. (2018). Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundwater for Sustainable Development,7, 359–371. https://doi.org/10.1016/j.gsd.2017.11.001.

    Article  Google Scholar 

  • Mushtaq, N., Younas, A., Mashiatullah, A., et al. (2018). Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere,200, 576–586. https://doi.org/10.1016/j.chemosphere.2018.02.154.

    Article  CAS  Google Scholar 

  • Nagaraju, A., Sunil Kumar, K., Thejaswi, A., & Sharifi, Z. (2014). Statistical analysis of the hydrogeochemical evolution of groundwater in the Rangampeta area, Chittoor District, Andhra Pradesh, South India. American Journal of Water Resources,2, 63–70. https://doi.org/10.12691/ajwr-2-3-2.

    Article  Google Scholar 

  • Ndoye, S., Fontaine, C., Gaye, C., & Razack, M. (2018). Groundwater quality and suitability for different uses in the Saloum Area of Senegal. Water,10, 1837. https://doi.org/10.3390/w10121837.

    Article  CAS  Google Scholar 

  • Neogi, B., Singh, A. K., Pathak, D. D., & Chaturvedi, A. (2017). Hydrogeochemistry of coal mine water of North Karanpura coalfields, India: implication for solute acquisition processes, dissolved fluxes and water quality assessment. Environmental Earth Sciences,76, 1–17. https://doi.org/10.1007/s12665-017-6813-4.

    Article  CAS  Google Scholar 

  • Otto, M. (1998). Multivariate methods. In R. Kellner, J. M. Mermet, M. Otto, & H. M. Widmer (Eds.), Analytical chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Pant, D., Keesari, T., Sharma, D., et al. (2017a). Study on uranium contamination in groundwater of Faridkot and Muktsar districts of Punjab using stable isotopes of water. Journal of Radioanalytical and Nuclear Chemistry,313, 635–639. https://doi.org/10.1007/s10967-017-5284-0.

    Article  CAS  Google Scholar 

  • Pant, D., Keesari, T., Rishi, M., et al. (2019). Spatiotemporal distribution of dissolved radon in uranium impacted aquifers of southwest Punjab. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-019-06656-w.

    Article  Google Scholar 

  • Pant, D., Tirumalesh, K., Kumar, A., et al. (2017b). Environmental isotopic study on uranium contamination in groundwater of Faridkot and Muktsar Districts of Punjab. In Proceedings of the thirteenth DAE-BRNS nuclear and radiochemistry symposium.

  • Patel, P., Raju, N. J., Reddy, B. C. S. R., et al. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh India. Environmental Earth Sciences,75, 611. https://doi.org/10.1007/s12665-015-5108-x.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses Transactions. American Geophysical Union,25, 914. https://doi.org/10.1029/TR025i006p00914.

    Article  Google Scholar 

  • Purushothaman, P., Someshwar Rao, M., Kumar, B., et al. (2012). Drinking and irrigation water quality in Jalandhar and Kapurthala Districts, Punjab, India: using hydrochemsitry. International Journal of Earth Sciences and Engineering,5, 1599–1608. https://doi.org/10.1509/jppm.27.2.117.

    Article  CAS  Google Scholar 

  • Purushothaman, P., Someshwar Rao, M., Rawat, Y. S., et al. (2014). Evaluation of hydrogeochemistry and water quality in Bist-Doab region, Punjab, India. Environmental Earth Sciences,72, 693–706. https://doi.org/10.1007/s12665-013-2992-9.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Islam, M. A., Bodrud-Doza, M., et al. (2018). Spatio-temporal assessment of groundwater quality and human health risk: A case study in Gopalganj, Bangladesh. Exposure and Health,10, 167–188. https://doi.org/10.1007/s12403-017-0253-y.

    Article  CAS  Google Scholar 

  • Rajkumar, H., Naik, P. K., & Rishi, M. S. (2018). Evaluation of heavy metal contamination in soil using geochemical indexing approaches and chemometric techniques. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-2081-4.

    Article  Google Scholar 

  • Rajmohan, N., & Elango, L. (2003). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology. https://doi.org/10.1007/s00254-004-1012-5.

    Article  Google Scholar 

  • Raju, A., & Singh, A. (2017). Assessment of groundwater quality and mapping human health risk in central Ganga Alluvial Plain, Northern India. Environmental Processes,4, 375–397. https://doi.org/10.1007/s40710-017-0232-0.

    Article  CAS  Google Scholar 

  • Rao, M. S., Krishan, G., Kumar, C. P., et al. (2017). Observing changes in groundwater resource using hydro-chemical and isotopic parameters: a case study from Bist Doab, Punjab. Environmental Earth Sciences,76, 1–16. https://doi.org/10.1007/s12665-017-6492-1.

    Article  Google Scholar 

  • Rao, S., Mahesh, J., Surinaidu, L., & Dhakate, R. (2015). Hydrochemical assessment of groundwater in alluvial aquifer region, Jalandhar District, Punjab, India. Environmental Earth Sciences73(12), 8145–8153.

    Article  Google Scholar 

  • Rashid, A., Guan, D. X., Farooqi, A., et al. (2018). Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Science of the Total Environment,635, 203–215. https://doi.org/10.1016/j.scitotenv.2018.04.064.

    Article  CAS  Google Scholar 

  • Revelle, R. (1941). Criteria for recognition of the sea water in ground-waters. EOS, Transactions of the American Geophysical Union,22, 593–597. https://doi.org/10.1029/TR022i003p00593.

    Article  Google Scholar 

  • Roy, A., Keesari, T., Mohokar, H., et al. (2018). Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Applied Water Science,8, 124. https://doi.org/10.1007/s13201-018-0761-3.

    Article  CAS  Google Scholar 

  • Sahu, P., Kisku, G. C., Singh, P. K., et al. (2018). Multivariate statistical interpretation on seasonal variations of fluoride-contaminated groundwater quality of Lalganj Tehsil, Raebareli District (UP) India. Environmental Earth Sciences,77, 484. https://doi.org/10.1007/s12665-018-7658-1.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, D. L. (1967). Chemistry of sanitary engineers (2nd ed., p. 518). New York: McGraw-Hill.

    Google Scholar 

  • Selvam, S., Singaraja, C., Venkatramanan, S., & Chung, S. Y. (2018). Geochemical appraisal of groundwater quality in Ottapidaram Taluk Thoothukudi District, Tamil Nadu using graphical and numerical method. Journal of the Geological Society of India,92, 313–320. https://doi.org/10.1007/s12594-018-1013-8.

    Article  CAS  Google Scholar 

  • Shakerkhatibi, M., Mosaferi, M., Pourakbar, M., et al. (2019). Comprehensive investigation of groundwater quality in the north-west of Iran: physicochemical and heavy metal analysis. Groundwater for Sustainable Development,8, 156–168. https://doi.org/10.1016/J.GSD.2018.10.006.

    Article  Google Scholar 

  • Sharma, S., Rishi, M.S., Kaur, L., & Singh, G. (2017). Resource development and management of groundwater focusing sustainability issues in Urban City. 12:887–900.

  • Singh, C. K., Kumar, A., Shashtri, S., et al. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration,175, 59–71. https://doi.org/10.1016/j.gexplo.2017.01.001.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research,38, 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Singh, A., Sharma, C. S., Jeyaseelan, A. T., & Chowdary, V. M. (2015). Spatio–temporal analysis of groundwater resources in Jalandhar district of Punjab state, India. Sustainable Water Resources Management,1, 293–304. https://doi.org/10.1007/s40899-015-0022-7.

    Article  Google Scholar 

  • Singh, P.K., Verma, P., & Tiwari, A.K. (2018). Hydrogeochemical investigation and qualitative assessment of groundwater resources in Bokaro district, Jharkhand, India.

  • Singh, G., Rishi, M. S., & Arora, N. K. (2019a). Integrated GIS-based modelling approach for irrigation water quality suitability zonation in parts of Satluj River Basin, Bist Doab region, North India. SN Applied Sciences, 1(11), 1438.

    Article  Google Scholar 

  • Singh, G., Rishi, M. S., Herojeet, R., Kaur, L., & Sharma, K. (2019b). Multivariate analysis and geochemical signatures of groundwater in the agricultural dominated taluks of Jalandhar district, Punjab, India. Journal of Geochemical Exploration, 106395.

  • Song, Y., Li, H., Li, J., et al. (2018). Multivariate linear regression model for source apportionment and health risk assessment of heavy metals from different environmental media. Ecotoxicology and Environmental Safety,165, 555–563. https://doi.org/10.1016/j.ecoenv.2018.09.049.

    Article  CAS  Google Scholar 

  • Sridharan, M., & Nathan, D. S. (2018). Chemometric tool to study the mechanism of arsenic contamination in groundwater of Puducherry region, South East coast of India. Chemosphere,208, 303–315. https://doi.org/10.1016/j.chemosphere.2018.05.083.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., et al. (2014). Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University-Science,26, 37–52. https://doi.org/10.1016/J.JKSUS.2013.08.001.

    Article  Google Scholar 

  • Tiwari, T. N., & Mishra, M. A. (1985). A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5(4), 276–279.

    CAS  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (2009). Risk Assessment Guidance for Superfund, Human Health Evaluation Manual. I:1–68. doi: [EPA/540/1-89/002].

  • World Bank (2012). India groundwater: A valuable but diminishing resource.

  • Wu, J., & Sun, Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Exposure and Health,8, 311–329. https://doi.org/10.1007/s12403-015-0170-x.

    Article  CAS  Google Scholar 

  • Yadav, K. K., Gupta, N., Kumar, V., et al. (2018). GIS-based evaluation of groundwater geochemistry and statistical determination of the fate of contaminants in shallow aquifers from different functional areas of Agra city, India: levels and spatial distributions. RSC Advances,8, 15876–15889. https://doi.org/10.1039/C8RA00577J.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University Grant Commission (UGC), Government of India, is duly acknowledged for providing Rajiv Gandhi National Fellowship (UGC-RGNF) for the doctoral degree. The author would like to express special thanks to Mr. Kuldeep Bist, Centre of Advance Study in Geology, Panjab University, Chandigarh, for his help during the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri S. Rishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Rishi, M.S., Herojeet, R. et al. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environ Geochem Health 42, 1833–1862 (2020). https://doi.org/10.1007/s10653-019-00449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00449-6

Keywords