Skip to main content

Advertisement

Log in

The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Biochar can be widely used to reduce the bioavailability of heavy metals in contaminated soil because of its adsorption capacity. But there are few studies about the effects of biochar on cadmium uptake by plants in soil contaminated with cadmium (Cd). Therefore, an incubation experiment was used to investigate the effects of rice straw biochar (RSBC) and coconut shell biochar (CSBC) on Cd immobilization in contaminated soil and, subsequently, Cd uptake by Lolium perenne. The results showed that the microbial counts and soil enzyme activities were significantly increased by biochar in Cd-contaminated soil, which were consistent with the decrease of the bioavailability of Cd by biochar. HOAc-extractable Cd in soil decreased by 11.3–22.6% in treatments with 5% RSBC and by 7.2–17.1% in treatments with 5% CSBC, respectively, compared to controls. The content of available Cd in biochar treatments was significantly lower than in controls, and these differences were more obvious in treatment groups with 5% biochar. The Cd concentration in L. perenne reduced by 4.47–26.13% with biochar. However, the biomass of L. perenne increased by 1.35–2.38 times after adding biochar amendments. So, Cd uptake by whole L. perenne was augmented by RSBC and CSBC. Accordingly, this work suggests that RSBC and CSBC have the potential to be used as a useful aided phytoremediation technology in Cd-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131(3), 374–379.

    CAS  Google Scholar 

  • Bai, J., Ouyang, H., Deng, W., Zhu, Y., Zhang, X., & Wang, Q. (2005). Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124(1), 181–192.

    CAS  Google Scholar 

  • Baikousi, M., Daikopoulos, C., Georgiou, Y., Bourlinos, A., Zbořil, R., Deligiannakis, Y., et al. (2013). Novel ordered mesoporous carbon with innate functionalities and superior heavy metal uptake. Journal of Physical Chemistry C, 117(33), 16961–16971.

    CAS  Google Scholar 

  • Baronti, S., Alberti, G., Vedove, G. D., Gennaro, F. D., Fellet, G., Genesio, L., et al. (2010). The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Italian Journal of Agronomy, 5(1), 3–12.

    Google Scholar 

  • Bhattacharya, P., Mukherjee, A. B., Jacks, G., & Nordqvist, S. (2002). Metal contamination at a wood preservation site: Characterisation and experimental studies on remediation. Science of the Total Environment, 290(1), 165–180.

    CAS  Google Scholar 

  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272(4), 121–128.

    CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Materials, 266(4), 141–166.

    CAS  Google Scholar 

  • Burgos, P., Pérez-De-Mora, A., Madejón, P., Cabrera, F., & Madejón, E. (2008). Trace elements in wild grasses: A phytoavailability study on a remediated field. Environmental Geochemistry and Health, 30(2), 109–114.

    CAS  Google Scholar 

  • Cheema, S. A., Khan, M. I., Tang, X., Zhang, C., Shen, C., Malik, Z., et al. (2009). Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). Journal of Hazardous Materials, 166(2), 1226–1231.

    CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., Mcbride, M. B., et al. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877.

    CAS  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture. Agronomy Journal, 95(3), 455–471.

    Google Scholar 

  • Cui, H., Zhou, J., Zhao, Q., Si, Y., Mao, J., Fang, G., et al. (2013). Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite. Journal of Soils and Sediments, 13(4), 742–752.

    CAS  Google Scholar 

  • Gosewinkel, U., & Broadbent, F. E. (1984). Conductimetric determination of soil urease activity. Communications in Soil Science and Plant Analysis, 15(11), 13.

    Google Scholar 

  • Gu, Y., Wang, P., & Kong, C. H. (2009). Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. European Journal of Soil Biology, 45(5), 436–441.

    CAS  Google Scholar 

  • Hechmi, N., Aissa, N. B., Abdenaceur, H., & Jedidi, N. (2014a). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environmental Science and Pollution Research International, 21(2), 1304.

    CAS  Google Scholar 

  • Hechmi, N., Aissa, N. B., Abdenaceur, H., & Jedidi, N. (2014b). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environmental Science and Pollution Research, 21(2), 1304–1313.

    CAS  Google Scholar 

  • Hossain, M. K., Strezov, V., Chan, K. Y., & Nelson, P. F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78(9), 1167–1171.

    CAS  Google Scholar 

  • Huang, L., Gao, X., Liu, M., Du, G., Guo, J., & Ntakirutimana, T. (2012). Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water. Ecological Engineering, 46(3), 98–106.

    CAS  Google Scholar 

  • Huang, H., Yu, N., Wang, L., Gupta, D. K., He, Z., Wang, K., et al. (2011). The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresource Technology, 102(23), 11034–11038.

    CAS  Google Scholar 

  • Jiang, T. Y., Jiang, J., Xu, R. K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89(3), 249–256.

    CAS  Google Scholar 

  • Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Yong, S. O., et al. (2017). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39(2), 403–415.

    CAS  Google Scholar 

  • Jin, H. P., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348(1–2), 439.

    Google Scholar 

  • Kauffman, J. S., Ellerbrock, B. M., Stevens, K. A., Brown, P. J., Pennington, W. T., & Hanks, T. W. (2009). Preparation, characterization, and sensing behavior of polydiacetylene liposomes embedded in alginate fibers. ACS Applied Materials & Interfaces, 1(6), 1287–1291.

    CAS  Google Scholar 

  • Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71(2), 95–122.

    Google Scholar 

  • Kolb, S. E., Fermanich, K. J., & Dornbush, M. E. (2009). Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal, 73(73), 1173–1181.

    CAS  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: Science and technology. Science and Technology Earthscan, 25(1), 15801–15811.

    Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology & Biochemistry, 43(9), 1812–1836.

    CAS  Google Scholar 

  • Liang, X., Han, J., Xu, Y., Sun, Y., Wang, L., & Tan, X. (2014). In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma, 235–236(4), 9–18.

    Google Scholar 

  • Liu, H., Guo, S., Jiao, K., Hou, J., Xie, H., & Xu, H. (2015). Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima. Journal of Hazardous Materials, 294, 121–127.

    CAS  Google Scholar 

  • Lu, K., Yang, X., Gielen, G., Bolan, N., Yong, S. O., Niazi, N. K., et al. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186(Pt 2), 285–292.

    CAS  Google Scholar 

  • Lucchini, P., Quilliam, R. S., Deluca, T. H., Vamerali, T., & Jones, D. L. (2014). Does biochar application alter heavy metal dynamics in agricultural soil? Agriculture, Ecosystems & Environment, 184(1), 149–157.

    CAS  Google Scholar 

  • Lundberg, B., & Sundqvist, B. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. Environmental Pollution, 159(12), 3269–3282.

    Google Scholar 

  • Ma, J. W., Sun, W. C., Hu, Q. F., Yu, Q. G., Wang, Q., & Fu, J. R. (2013). Effects of cyanamide fertilizer on microbial community structure of continuous cropping soil. Journal of Zhejiang University, 39, 281–290.

    CAS  Google Scholar 

  • Mao, J. D., Johnson, R. L., Lehmann, J., Olk, D. C., Neves, E. G., Thompson, M. L., et al. (2012). Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration. Environmental Science and Technology, 46(17), 9571.

    CAS  Google Scholar 

  • Mohamed, I., Zhang, G. S., Li, Z. G., Liu, Y., Chen, F., & Dai, K. (2015). Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84, 67–76.

    Google Scholar 

  • Moreno, J., Garcia, L., Falchini, L., & Pietramellara, G. (2001). The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biology & Biochemistry, 33(4), 483–489.

    CAS  Google Scholar 

  • Nejad, Z. D., Jung, M. C., & Kim, K. H. (2017). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40(1–2), 1–27.

    Google Scholar 

  • Paranavithana, G. N., Kawamoto, K., Inoue, Y., Saito, T., Vithanage, M., Kalpage, C. S., et al. (2016). Adsorption of Cd 2+ and Pb 2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences, 75(6), 484.

    Google Scholar 

  • Paz-Ferreiro, J., Fu, S., Méndez, A., & Gascó, G. (2014). Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. Journal of Soils and Sediments, 14(3), 483–494.

    CAS  Google Scholar 

  • Pedersen, J. C. (1992). Natamycin as a fungicide in agar media. Applied and Environmental Microbiology, 58(3), 1064.

    CAS  Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33(5), 477–493.

    Google Scholar 

  • Philippe, V., Cécile, G. M., & Adnane, H. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68(8), 1563–1575.

    Google Scholar 

  • Puga, A., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93.

    CAS  Google Scholar 

  • Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149–161.

    CAS  Google Scholar 

  • Skjemstad, J. O., Gillman, G. P., Massis, A., & Spouncer, L. R. (2008). Measurement of cation exchange capacity of organic-matter fractions from soils using a modified compulsive exchange method. Communications in Soil Science and Plant Analysis, 39(5–6), 926–937.

    CAS  Google Scholar 

  • Song, W., Chen, B. M., & Liu, L. (2013). Soil heavy metal pollution of cultivated land in China. Research of Soil & Water Conservation, 20, 293–298.

    Google Scholar 

  • Sorrell, B. K., Brix, H., Schierup, H. H., & Lorenzen, B. (1997). Die-back of Phragmites australis: Influence on the distribution and rate of sediment methanogenesis. Biogeochemistry, 36(2), 173–188.

    Google Scholar 

  • Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39(4), 1236.

    CAS  Google Scholar 

  • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., et al. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240(6), 574–578.

    CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Xu, Y., Wang, L., & Liang, X. (2011). Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. Journal of Hazardous Materials, 186(2–3), 2075–2082.

    CAS  Google Scholar 

  • Sutjaritvorakul, T., Whalley, A. J. S., Sihanonth, P., & Roengsumran, S. (2010). Antimicrobial activity from endophytic fungi isolated from plant leaves in Dipterocarpous forest at Viengsa district Nan province, Thailand. International Journal of Agricultural Technology, 7, 115–121.

    Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., Chang, S. C., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58(9), 5538.

    CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501–2510.

    CAS  Google Scholar 

  • Wang, M. (1999). Soil water holding capacity and soil available water in plantations in the loess region. Scientia Silvae Sinicae, 35, 7–14.

    Google Scholar 

  • Wang, M. Y., Shi, X. Z., Dong-Sheng, Y. U., Sheng-Xiang, X. U., Tan, M. Z., Sun, W. X., et al. (2013). Regional differences in the effect of climate and soil texture on soil organic carbon. Pedosphere, 23(6), 799–807.

    CAS  Google Scholar 

  • Waqas, M., Khan, A. L., Kang, S. M., Yoonha, K., & Injung, L. (2014). Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biology and Fertility of Soils, 50(7), 1155–1167.

    CAS  Google Scholar 

  • Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant and Soil, 300(1–2), 9–20.

    CAS  Google Scholar 

  • Wu, B., Chen, R., Yao, Y., Gao, N., Zuo, L., & Xu, H. (2015). Mycoremediation potential of Coprinus comatus in soil co-contaminated with copper and naphthalene. RSC Advances, 5(83), 67524–67531.

    CAS  Google Scholar 

  • Wu, B., Cheng, G., Kai, J., Shi, W., Wang, C., & Xu, H. (2016). Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil. Science of the Total Environment, 562, 732–739.

    CAS  Google Scholar 

  • Xiao, K., Li, Y., Sun, Y., Liu, R., Li, J., Zhao, Y., et al. (2017). Remediation performance and mechanism of heavy metals by a bottom-up activation and extraction system using multiple biochemical materials. ACS Applied Materials & Interfaces, 9(36), 30448.

    CAS  Google Scholar 

  • Xiao, G. L., Yin, K. L., Feng, M. L., Ma, Q., Ping, L. Z., & Ping, Y. (2009). Changes in soil organic carbon, nutrients and aggregation after conversion of native desert soil into irrigated arable land. Soil & Tillage Research, 104(2), 263–269.

    Google Scholar 

  • Yuan, J. H., Xu, R. K., Qian, W., & Wang, R. H. (2011). Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soils and Sediments, 11(5), 741–750.

    CAS  Google Scholar 

  • Zhao, X., Wang, J. W., Xu, H. J., Zhou, C. J., Wang, S. Q., & Xing, G. X. (2015). Effects of crop-straw biochar on crop growth and soil fertility over a wheat-millet rotation in soils of China. Soil Use and Management, 30(3), 311–319.

    Google Scholar 

  • Zhu, X., Yang, F., Wei, C., & Tao, L. (2016). Bioaccessibility of heavy metals in soils cannot be predicted by a single model in two adjacent areas. Environmental Geochemistry and Health, 38(1), 233–241.

    CAS  Google Scholar 

  • Zukowska, J., & Biziuk, M. (2008). Methodological evaluation of method for dietary heavy metal intake. Journal of Food Science, 73(2), R21–R29.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors also wish to thank Professor Guanglei Cheng from Sichuan University for the technical assistance. This study was supported by the Science and Technology Support Program of Sichuan Province (2016NZ0050); the Agricultural Science and Technology Achievements Transformation Program of Sichuan Province (2017NZZJ008); the Key Research and Development Program of Sichuan Province (2017SZ0188, 2017SZ0181, 2018NZ0008); and the National Science and Technology Supporting Program (2015BAD05B01-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Xu or Yunzhen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jia, Z., Ma, H. et al. The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne. Environ Geochem Health 41, 2067–2080 (2019). https://doi.org/10.1007/s10653-019-00257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00257-y

Keywords

Navigation