Skip to main content

Advertisement

Log in

Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil reclamation via additives can cause contradictory effects on the mobilization of toxic elements in soils under dry and wet conditions. Therefore, our aim was to investigate the impact of compost and sulfur in two rates (1.25 and 2.5%) on fractionation, mobilization, and phyto-availability of cadmium (Cd) and nickel (Ni) to sorghum (dry soil) and barnyard grass (wet soil) in a fluvial soil spiked with 25 mg Cd or 200 mg Ni/kg soil. Compost decreased the solubility and mobilization of Cd (especially in dry soil) and Ni (in both soils). Sulfur increased the solubility of Cd (31% in dry soil—49% in wet soil) and Ni (4.6% in wet soil—8.7% in dry soil). Sulfur altered the carbonate fraction of Cd to the soluble fraction and the residual fraction of Cd and Ni to the non-residual fraction. Compost decreased Cd and increased Ni in sorghum, but enhanced Cd and degraded Ni in grass. Sulfur increased Cd and Ni in both plants, and the increasing rate of Cd was higher in grass than in sorghum, while Ni was higher in sorghum than in grass. These results suggest that compost can be used as an immobilizing agent for Cd in the dry soil and Ni in the wet soil; however, it might be used as mobilizing agent for Cd in the wet soil and Ni in the dry soil. Sulfur (with rate 2.5%) can be used for enhancing the phyto-extraction of Cd and Ni (especially Cd) from contaminated alkaline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alburquerque, J. A., de la Fuente, C., & Bernal, M. P. (2011). Improvement of soil quality after ‘‘alperujo’’ compost application to two contaminated soils characterised by differing heavy metal solubility. Journal of Environmental Management, 92, 733–741.

    Article  CAS  Google Scholar 

  • Al Mamun, S., Chanson, G., Muliadi, Benyas, E., Aktar, M., Lehto, N., et al. (2016). Municipal composts reduce the transfer of Cd from soil to vegetables. Environmental Pollution, 213, 8–15.

    Article  CAS  Google Scholar 

  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., Varennes, A., Vallini, G., & Duarte, E. (2009). Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere, 74, 1292–1300.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Golia, E. E., Shaheen, S. M., & Rinklebe, J. (2017a). Bioavailability and health risk assessment of potentially toxic elements in Thriassio Plain, near Athens, Greece. Environmental Geochemistry and Health, 39, 319–330.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017b). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.

    Article  CAS  Google Scholar 

  • Beesley, L., Inneh, O. S., Norton, G. J., Moreno-Jimenez, E., Pardo, T., Clemente, R., et al. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186, 195–202.

    Article  CAS  Google Scholar 

  • Beiyuan, J., Awad, Y. M., Beckers, F., Tsang, D. C. W., Ok, Y. S., & Rinklebe, J. (2017). Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 178, 110–118.

    Article  CAS  Google Scholar 

  • Bose, N., Naik, S. K., & Das, D. K. (2009). Evaluation of nitrosulf and elemental sulphur on growth and yield of rapeseed (Brassica campestris L.) in India. Archives of Agronomy and Soil Science, 55, 79–90.

    Article  CAS  Google Scholar 

  • Cheng, H., Wang, M., Wong, M. H., & Ye, Z. H. (2014). Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant and Soil, 375, 137–148.

    Article  CAS  Google Scholar 

  • Cui, Y., Dong, Y., Li, H., & Wang, Q. (2004). Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environment International, 30, 323–328.

    Article  CAS  Google Scholar 

  • Dede, G., & Ozdemir, S. (2016). Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge. Journal of Environmental Management, 166, 103–108.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination, 23, 779–799.

    Article  CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160, 414–424.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis: Physical and mineralogy methods, part 1 (2nd ed., pp. 383–412). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Hashimoto, Y., & Yamaguchi, N. (2013). Chemical speciation of cadmium and sulfur K-edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron. Soil Science Society of America Journal, 77, 1189–1198.

    Article  CAS  Google Scholar 

  • Hattori, H., Kuniyasu, K., Chiba, K., & Chino, M. (2006). Effect of chloride application and low soil pH on cadmium uptake from soil by plants. Soil Science and Plant Nutrition, 52, 89–94.

    Article  CAS  Google Scholar 

  • Hernández-Allica, J., Becerril, J. M., Zárate, O., & Garbisu, C. (2006). Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281, 147–158.

    Article  Google Scholar 

  • Hu, M., Li, F., Liu, C., & Wu, W. (2015). The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports, 5, 13611. doi:10.1038/srep13611.

    Article  Google Scholar 

  • International Organization for Standardization, ISO. (1995). Soil quality, extraction of trace elements soluble in aqua regia, ISO 11466, 1995. https://www.iso.org/standard/19418.html.

  • Igalavithana, A. D., Lee, S.-E., Lee, Y. H., Tsang, D. C. W., Rinklebe, J., Kwon, E. E., et al. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603.

    Article  CAS  Google Scholar 

  • Jones, J., Wolf, J. B., & Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpretation guide. Athens: Micro-Macro Publishing Inc.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kaplan, M., Orman, S., Kadar, I., & Koncz, J. (2005). Heavy metal accumulation in calcareous soil and sorghum plants after addition of sulphur-containing waste as a soil amendment in Turkey. Agriculture Ecosystem & Environment, 111, 41–46.

    Article  CAS  Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., et al. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science and Technology, 34, 1778–1783.

    Article  CAS  Google Scholar 

  • Lair, G., Graf, M., Zehetner, F., & Gerzabek, M. (2008). Distribution of cadmium among geochemical fractions in floodplain soils of progressing development. Environmental Pollution, 156, 207–214.

    Article  CAS  Google Scholar 

  • Li, H., Luo, N., Li, Y. W., Cai, Q. Y., Li, H. Y., Mo, C. H., et al. (2017). Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. A review. Environmental Pollution, 224, 622–630.

    Article  CAS  Google Scholar 

  • Licina, V., Antic-Mladenovic, S., Kresovic, M., & Rinklebe, J. (2010). Effect of high Nickel and Chromium background levels in serpentine soil on their accumulation in organs of a perennial plant. Communications in Soil Science and Plant Analysis, 41, 482–496.

    Article  CAS  Google Scholar 

  • Loeppert, R. H., & Inskeep, W. P. (1996). Iron. In D. L. Sparks et al. (Eds.), Methods of soil analysis: Chemical methods, part 3 (pp. 639–664). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionate-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Ok, Y. S., Kim, S. C., Kim, D. K., Skousen, J. G., Lee, J. S., Cheong, Y. W., et al. (2011). Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry and Health, 33, 23–30.

    Article  CAS  Google Scholar 

  • Pardo, T., Clemente, R., & Bernal, M. P. (2011). Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere, 84, 642–650.

    Article  CAS  Google Scholar 

  • Rinklebe, J., & Shaheen, S. M. (2014). Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water Air & Soil Pollution, 225, 2039. doi:10.1007/s11270-014-2039-1.

    Article  Google Scholar 

  • Rinklebe, J., & Shaheen, S. M. (2017). Redox chemistry of nickel in soils and sediments: A review. Chemosphere, 179, 265–278.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Shaheen, S. M., & Frohne, T. (2016a). Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142, 41–47.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Antic-Mladenovic, S., Frohne, T., Stärk, H.-J., Tomić, Z., & Licina, V. (2016b). Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma, 263, 203–214.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Knox, A. S., & Paller, M. (2016c). Trace elements in waterlogged soils and sediments. New York: CRC Press; Taylor & Francis Group.

    Google Scholar 

  • Rinklebe, J., Kumpiene, J., Du Laing, G., & Ok, Y. S. (2017). Biogeochemistry of trace elements in the environment—editorial to the special issue. Journal of Environmental Management, 186, 127–130.

    Article  Google Scholar 

  • Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J., Tsang, D., Meers, E., et al. (2016a). Phyto-management of heavy metals in contaminated soils using sunflower—a review. Critical Reviews Environmental Science and Technology. doi:10.1080/10643389.2016.1248199.

    Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Zia-ur-Rehman, M., Abbas, Z., et al. (2016b). Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: A critical review. Environmental Geochemistry and Health. doi:10.1007/s10653-016-9826-0.

    Google Scholar 

  • Rochayati, S., Du Laing, G., Rinklebe, J., Meissner, R., & Verloo, M. (2011). Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: Accumulation of cadmium and zinc in soils and shoots of maize plants. Journal of Plant Nutrition and Soil Science, 174, 186–194.

    Article  CAS  Google Scholar 

  • Shaheen, S. M. (2009). Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma, 153, 61–68.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015a). Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74, 319–326.

    Article  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015b). Phytoextraction of potentially toxic elements from a contaminated floodplain soil using Indian mustard, rapeseed, and sunflower. Environmental Geochemistry and Health, 37, 953–967.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2017). Sugar beet factory lime affects the mobilization of Cd Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil. Journal of Environmental Management, 186, 253–260.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Frohne, T., White, J., DeLaune, R., & Rinklebe, J. (2017a). Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Journal of Environmental Management, 186, 131–140.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Antoniadis, V., Biswas, J., Wang, H., Ok, Y.-S., & Rinklebe, J. (2017b). Biosolids application affects the competitive sorption and lability of cadmium, copper, nickel, lead, and zinc in fluvial and calcareous soils. Environmental Geochemistry and Health. doi:10.1007/s10653-017-9927-4.

    Google Scholar 

  • Shaheen, S. M., Shams, M. S., Khalifa, M. R., El-Daly, M. A., & Rinklebe, J. (2017c). Various soil amendments and wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety. doi:10.1016/j.ecoenv.2017.04.026.

    Google Scholar 

  • Shaheen, S. M., Rinklebe, J., Frohne, T., White, J., & DeLaune, R. (2016). Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic soils. Chemosphere, 150, 740–748.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Rinklebe, J., & Selim, H. M. (2015a). Impact of various amendments on the bioavailability and immobilization of Ni and Zn in a contaminated floodplain soil. International Journal of Environmentral Science and Technology, 12, 2765–2776.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Rinklebe, J., & Tsadilas, C. D. (2015b). Fractionation and mobilization of toxic elements in floodplain soils from Egypt, Germany and Greece; a comparison study. Eurasian Soil Sciences, 48, 1317–1328.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., Rupp, H., Rinklebe, J., & Meissner, R. (2015c). Distribution coefficients of cadmium and zinc in different soils in mono-metal and competitive sorption systems. Journal of Plant Nutrition Soil Science, 178, 671–681.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Rinklebe, J., Frohne, T., White, J., & DeLaune, R. (2014a). Biogeochemical factors governing Co, Ni, Se, and V dynamics in periodically flooded Egyptian north Nile delta rice soils. Soil Science Society of America Journal, 78, 1065–1078.

    Article  Google Scholar 

  • Shaheen, S. M., Rinklebe, J., Rupp, H., & Meissner, R. (2014b). Temporal dynamics of soluble Cd Co, Cu, Ni, and Zn and their controlling factor in a contaminated floodplain soil using undisturbed groundwater lysimeter. Environmental Pollution, 191, 223–231.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Shams, M. S., Ibrahim, S. M., Elbehiry, F., Antoniadis, V., & Hooda, P. (2014c). Stabilization of biosolids by using various by-products: Impact on soil properties, biomass production, and bioavailability of copper and zinc. Water, Air, and Soil pollution, 225, 2014.

    Article  Google Scholar 

  • Shaheen, S. M., Abo-Waly, M. E., & Ali, R. A. (2013a). Classification, characterization and management of some agricultural soils in the North of Egypt. In S. A. Shahid et al. (Eds.), Developments in soil classification, land use planning and policy implications: Innovative thinking of soil inventory for land use planning and management of land resources (pp. 417–447). Dordrecht: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2013b). A review of the distribution coefficient of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201–202, 43–56.

    Article  Google Scholar 

  • Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., Paula, M. C., & Antunes, P. M. C. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology. doi:10.1007/398_2016_8.

    Google Scholar 

  • Si, J., Tian, B., & Wang, H. (2006). Effect of incubation temperature and wet-dry cycle on the availabilities of Cd, Pb and Zn in soil. Journal of Environmental Sciences, 18, 1119–1123.

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010). Key of soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd Ed.). Agric. Handb. No. 436, USDA-NRCS, Washington D.C: Gov. Print. Office.

  • Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils. Communication in Soil Sciences and Plant Analysis, 8, 195–207.

    Article  CAS  Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loppert, R. H., Soltanpour, P. N., Tabatabai, M. A., et al. (1996). Methods of soil analysis: Chemical methods, part 3. Madison, WI: Agronomy Society of America and Soil Science Society of America.

    Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry. Genesis, composition, reactions (2nd ed.). New York: Wiley-Interscience.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 52, 45–53.

    Google Scholar 

  • Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal bioavailability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224.

    Article  CAS  Google Scholar 

  • Wang, F., Ouyang, W., Hao, F., Lin, C., & Song, N. (2014). In situ remediation of cadmium-polluted soil reusing four by-products individually and in combination. Journal of Soil & Sediments, 14, 451–461.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Q., Hui, W., Shi, J., Lin, Q., Chen, X., et al. (2008). Effect of sulphur on soil Cu/Zn availability and microbial community composition. Journal of Hazardous Materials, 159, 385–389.

    Article  CAS  Google Scholar 

  • Xia, Q., Peng, C., Lamb, D., Kader, M., Mallavarapu, M., Naidu, R., et al. (2016). Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method. Chemosphere, 154, 343–349.

    Article  CAS  Google Scholar 

  • Yu, K., Böhme, F., Rinklebe, J., Neue, H. U., & DeLaune, R. D. (2007). Major biogeochemical processes in soils—a microcosm incubation from reducing to oxidizing conditions. Soil Science Society of America Journal, 71, 1406–1417.

    Article  CAS  Google Scholar 

  • Yu, H-Y., Liu, C., Zhu, J., Li, F., Deng, D-M., Wang, Q., & Liu, C. (2016). Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.

    Article  CAS  Google Scholar 

  • Zhang, C., Ge, Y., Yao, H., Chen, X., & Hu, M. (2012). Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review. Frontiers of Environmental Science & Engineering, 6, 509–517.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Alexander von Humboldt Foundation (Ref 3.4 - EGY - 1185373 - GF-E) for financial support of the postdoctoral scholarships of Prof. Shaheen at the University of Wuppertal, Germany. Technical assistances from the laboratory of soil and water sciences, Faculty of Agriculture, Kafrelsheikh University and the central laboratory for environmental studies in Kafrelsheikh University are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabry M. Shaheen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Supplementary material 2 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S.M., Balbaa, A.A., Khatab, A.M. et al. Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil. Environ Geochem Health 39, 1305–1324 (2017). https://doi.org/10.1007/s10653-017-9962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9962-1

Keywords

Navigation