Skip to main content
Log in

Geochemical caper fingerprints as a tool for geographical origin identification

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The identification of geographical origin of food products is important for both consumers and producers to ensure quality and avoid label falsifications. The caper plant (Capparis spinosa L., Brassicales Capparidaceae), a xerophytic shrub common in the Mediterranean area, produces buds and fruits that are commercialized in brine at high price. Those grown in Italy in the Aeolian Islands are renowned for their high quality. This study is aimed to establish a correlation between the geological and geochemical features of soil and the chemical composition of caper buds grown in two Aeolian Islands, Lipari and Salina. Major and trace elements were investigated by X-ray fluorescence and inductively coupled plasma-mass spectrometry in soil and caper samples from three localities in Lipari and Salina, and data from the three sites were compared by a nonparametric test, a correlation test and multivariate statistics (principal component analysis). The results allowed to discriminate soils according to geolithological characteristics of each area and detect a statistically significant correspondence between soil and caper samples for the elements Co, Fe, Mg and Rb, identifying thus possible geochemical caper fingerprints of origin. These results may also be useful to protect the high quality of Aeolian caper products by a suitable “Made in Italy” trademark and avoid falsifications and frauds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aceto, M., Robotti, E., Oddone, M., Baldizzone, M., Bonifacino, G., Bezzo, G., et al. (2013). A traceability study on the Moscato wine chain. Food Chemistry, 138, 1914–1922.

    Article  CAS  Google Scholar 

  • Adamo, P., Zampella, M., Quétel, C. R., Aversano, R., Dal Piaz, F., De Tommasi, N., et al. (2012). Biological and geochemical markers of the geographical origin and genetic identity of potatoes. Journal Geochemical Exploration, 121, 62–68.

    Article  CAS  Google Scholar 

  • Aide, M. T., & Aide, C. (2012). Rare earth elements: Their importance in understanding soil genesis. International Scholarly Research Notices, 2012, 1–11.

    Article  Google Scholar 

  • Almeida, M., & Vasconcelos, M. T. (2003). Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. Journal of Agricultural and Food Chemistry, 51, 4788–4798.

    Article  CAS  Google Scholar 

  • Ariyama, K., Aoyama, Y., Mochizuki, A., Homura, Y., Kadokura, M., & Yasui, A. (2007). Determination of the geographic origin of onions between three main production areas in Japan and other countries by mineral composition. Journal of Agricultural and Food Chemistry, 55, 347–354.

    Article  CAS  Google Scholar 

  • Bandoniene, D., Zettl, D., Meisel, T., & Maneiko, M. (2013). Suitability of elemental fingerprinting for assessing the geographic origin of pumpkin (Cucurbita pepo var. styriaca) seed oil. Food Chemistry, 136, 1533–1542.

    Article  CAS  Google Scholar 

  • Barbera, G., & Di Lorenzo, R. (1982). La coltura specializzata del cappero nell’isola di Pantelleria. L’informatore Agrario, 38, 2113–2117.

    Google Scholar 

  • Barker, A. L., & Pilbeam, D. J. (2007). Handbook of plant nutrition (1st ed.). Boca Raton, FL: Taylor & Francis Group, LLC.

    Google Scholar 

  • Bigazzi, G., Coltelli, M., & Norelli, P. (2003). Nuove età delle ossidiane di Lipari determinate con il metodo delle tracce di fissione. Geoitalia, Bellaria, 48, 444–446.

    Google Scholar 

  • Bong, Y. S., Song, B. Y., Gautam, M. K., Jang, C. S., An, H. J., & Lee, K. S. (2013). Discrimination of the geographic origin of cabbages. Food Control, 30, 626–630.

    Article  CAS  Google Scholar 

  • Brioschi, L., Steinmann, M., Lucot, E., Pierret, M. C., Stille, P., Prunier, J., et al. (2013). Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143–163.

    Article  CAS  Google Scholar 

  • Calanchi, N., Peccerillo, A., Tranne, C. A., Lucchini, F., Rossi, P. L., Kempton, L., et al. (2002). Petrology and geochemistry of volcanic rocks from the island of Panarea: Implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian sea). Journal of Volcanology and Geothermal Research, 115, 367–395.

    Article  CAS  Google Scholar 

  • Camargo, A. B., Resnizky, S., Marchevsky, E. J., & Luco, J. M. (2010). Use of the Argentinean garlic (Allium sativum L.) germplasm mineral profile for determining geographic origin. Journal of Food Composition and Analysis, 23, 586–591.

    Article  CAS  Google Scholar 

  • Censi, P., Saiano, F., Pisciotta, A., & Tuzzolino, N. (2014). Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils. Science of the Total Environment, 474, 597–608.

    Article  CAS  Google Scholar 

  • Cicchino, A. M. P., Zanella, E., De Astis, G., Lanza, R., Lucchi, F., Tranne, C. A., et al. (2011). Rock magnetism and compositional investigation of Brown Tuffs deposits at Lipari and Vulcano (Aeolian Islands—Italy). Journal of Volcanology and Geothermal Research, 208, 23–38.

    Article  CAS  Google Scholar 

  • D’Antone, C., Punturo, R., & Vaccaro, C. (2017). Rare earth elements distribution in grapevine varieties grown on volcanic soils: An example from Mount Etna (Sicily, Italy). Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-5878-6.

    Article  Google Scholar 

  • De la Guardia, M., & Gonzálvez, A. (2013). Food protected designation of origin: Methodologies and applications (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Di Giacomo, F., Del Signore, A., & Giacco, M. (2007). Determining the geographic origin of potatoes using mineral and trace element content. Journal of Agricultural and Food Chemistry, 55, 860–866.

    Article  CAS  Google Scholar 

  • Ewart, A. (1982). The mineralogy and petrology of tertiary-recent orogenic volcanic rocks: With special reference to the andesitic-basaltic compositional range. In R. S. Thorn (Ed.), Andesites: Orogenic andesites and related rocks (pp. 25–95). New York, NY: Wiley.

    Google Scholar 

  • Fabiani, M. P., Arrúa, R. C., Vázquez, F., Diaz, M. P., Baron, M. V., & Wunderlin, D. A. (2010). Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chemistry, 119, 372–379.

    Article  CAS  Google Scholar 

  • Forni, F., Lucchi, F., Peccerillo, A., Tranne, C. A., Rossi, P. L., & Frezzotti, M. L. (2013). Stratigraphy and geological evolution of Lipari volcanic complex (central Aeolian archipelago). In F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne, & P. L. Rossi (Eds.), The Aeolian islands volcanoes (pp. 213–279). London: Geological Society Memoirs.

    Google Scholar 

  • Furia, E., Naccarato, A., Sindona, G., Stabile, G., & Tagarelli, A. (2011). Multielement fingerprinting as a tool in origin authentication of PGI food products: Tropea red onion. Journal of Agricultural and Food Chemistry, 59, 8450–8457.

    Article  CAS  Google Scholar 

  • Gonzálvez, A., Llorens, A., Cervera, M. L., Armenta, S., & De la Guardia, M. (2000). Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chemistry, 112, 26–34.

    Article  CAS  Google Scholar 

  • Inocencio, C., Alcaraz, F., Calderón, F., Obón, C., & Rivera, D. (2002). The use of floral characters in Capparis sect. Capparis to determine the botanical and geographical origin of capers. European Food Research and Technology, 214, 335–339.

    Article  CAS  Google Scholar 

  • Inocencio, C., Cowan, R. S., Alcaraz, F., Rivera, D., & Fay, M. F. (2005). AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genetic Resources and Crop Evolution, 52, 44–137.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kaplan, D. I., Adriano, D. C., Carlson, C. L., & Sajwan, K. S. (1990). Vanadium: Toxicity and accumulation by beans. Water, Air, and Soil Pollution, 49, 81–91.

    Article  CAS  Google Scholar 

  • Kötschau, A., Büchel, G., Einax, J. W., Meißner, R., von Tümpling, W., & Merten, D. (2014). Element pattern recognition and classification in sunflowers (Helianthus annuus) grown on contaminated and non-contaminated soil. Microchemical Journal, 114, 164–174.

    Article  CAS  Google Scholar 

  • Kruk, J., Burda, K., Jemiola-Rzeminska, M., & Strzalka, K. (2003). The 33 kDa protein of photosystem II is a low affinity calcium- and lanthanide-binding protein. Biochemical Journal, 42, 14862–14867.

    Article  CAS  Google Scholar 

  • Lanzo, G., Basile, S., Brai, M., & Rizzo, S. (2010). Volcanic products of Lipari (Aeolian Islands, Italy): Multivariate analysis of petrographic and radiometric data. Radiation Measurements, 45, 816–822.

    Article  CAS  Google Scholar 

  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal Petrology, 27, 745–750.

    Article  Google Scholar 

  • Liu, H. C., You, C. F., Chen, C. Y., Liu, Y. C., & Chung, M. T. (2014). Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium. Food Chemistry, 142, 439–445.

    Article  CAS  Google Scholar 

  • Lo Feudo, G., Naccarato, A., Sindona, G., & Tagarelli, A. (2010). Investigating the origin of tomatoes and triple concentrated tomato pastes through multielement determination by inductively coupled plasma mass spectrometry and statistical analysis. Journal of Agricultural and Food Chemistry, 58, 3801–3807.

    Article  CAS  Google Scholar 

  • Longobardi, F., Casiello, G., Cortese, M., Perini, M., Camin, F., Catucci, L., et al. (2015). Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics. Food Chemistry, 188, 343–349.

    Article  CAS  Google Scholar 

  • Lucchi, F., Gertisser, R., Keller, J., Forni, F., De Astis, G., & Tranne, C. A. (2013a). Eruptive history and magmatic evolution of the island of Salina (central Aeolian archipelago). In F. Lucchi, A. Peccerillo, J. Keller, C. A. Tranne, & P. L. Rossi (Eds.), The Aeolian islands volcanoes (pp. 155–211). London: Geological Society Memoirs.

    Google Scholar 

  • Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A., & Rossi, P. L. (2013b). The Aeolian islands volcanoes (1st ed.). London: Geological Society Memoir.

    Google Scholar 

  • Ma, G., Zhang, Y., Zhang, J., Wang, G., Chen, L., Zhang, M., et al. (2016). Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example. Food Control, 59, 714–720.

    Article  CAS  Google Scholar 

  • Mantrov, V. (2014). EU Law on indications of geographical origin theory and practice. Berlin: Springer.

    Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). Composition of earth. Chemical Geology, 120, 223–253.

    Article  CAS  Google Scholar 

  • Mercurio, M., Grilli, E., Odierna, P., Morra, V., Prohaska, T., Coppola, E., et al. (2014). A ‘Geo-Pedo-Fingerprint’ (GPF) as a tracer to detect univocal parent material-to-wine production chain in high quality vineyard districts, Campi Flegrei (Southern Italy). Geoderma, 231, 64–78.

    Article  CAS  Google Scholar 

  • Merschel, G., Bau, M., Baldewein, L., Dantas, E. L., Walde, D., & Bühn, B. (2015). Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: Anthropogenic gadolinium and geogenic REEs in Lake Paranoà, Brasilia. Comptes Rendus Geoscience, 347, 284–293.

    Article  Google Scholar 

  • Morard, P., Pujos, A., Bernadac, A., & Bertoni, G. (1996). Effect of temporary calcium deficiency on tomato growth and mineral nutrition. Journal of Plant Nutrition, 19, 115–127.

    Article  CAS  Google Scholar 

  • Navarro, J. M., Matinez, V., Cerda, A., & Botella, M. A. (2000). Effect of salinity × calcium interaction on cation balance in melon plants grown under two regimes of orthophosphate. Journal of Plant Nutrition, 21, 991–1006.

    Article  Google Scholar 

  • Nikkarinen, M., & Mertanen, E. (2004). Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 17, 301–310.

    Article  CAS  Google Scholar 

  • Özcan, M. (1999). Pickling and storage of caperberries (Capparis spp.). European Food Research and Technology, 208, 379–382.

    Google Scholar 

  • Pepi, S., Grisenti, P., Sansone, L., Chicca, M., & Vaccaro, C. (2017a). Chemical elements as fingerprints of geographical origin in cultivars of Vitis vinifera L. raised on the same SO4 rootstock. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0443-y.

    Article  Google Scholar 

  • Pepi, S., Sansone, L., Chicca, M., Marrocchino, E., & Vaccaro, C. (2016). Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera”. Environmental Monitoring and Assessment, 188, 477.

    Article  CAS  Google Scholar 

  • Pepi, S., Sansone, L., Chicca, M., & Vaccaro, C. (2017b). Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. “Glera”. Chemie Der Erde-Geochemistry, 77, 121–130.

    Article  CAS  Google Scholar 

  • Pepi, S., & Vaccaro, C. (2017). Geochemical fingerprints of “Prosecco” wine based on major and trace elements. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0029-0.

    Article  Google Scholar 

  • Pii, Y., Zamboni, A., Dal Santo, S., Pezzotti, M., Varanini, Z., & Pandolfini, T. (2017). Prospect on ionomic signatures for the classification of grapevine berries according to their geographical origin. Frontiers and Plant Science, 8, 1–7.

    Article  Google Scholar 

  • Protano, G., & Rossi, S. (2014). Relationship between soil geochemistry and grape composition in Tuscany (Italy). Journal of Soil Science and Plant Nutrition, 177, 500–508.

    Article  CAS  Google Scholar 

  • Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Rivera, D., Inocencio, C., Obón, C., & Alcaraz, F. (2003). Review of food and medicinal uses of Capparis L. subgenus Capparis (Capparidaceae). Economic Botany, 57, 34–515.

    Google Scholar 

  • Sozzi, G. O. (2001). Caper bush: Botany and horticulture. Horticultural Reviews, 27, 88–125.

    Google Scholar 

  • Sozzi, G. O., Peter, K. V., Nirmal Babu, K., & Divakaran, M. (2012). Capers and caperberries. In K. V. Peter (Ed.), Handbook of herbs and spices. Philadelphia: Woodhead Publishing Limited.

    Google Scholar 

  • Swoboda, S., Brunner, M., Boulyga, S. F., Galler, P., Horacek, M., & Prohaska, T. (2008). Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS. Analytical and Bioanalytical Chemistry, 390, 487–494.

    Article  CAS  Google Scholar 

  • Thiel, G., Geisler, G., Blechschmidt, I., & Danzer, K. (2004). Determination of trace elements in wines and classification according to their provenance. Analytical and Bioanalytical Chemistry, 378, 1630–1636.

    Article  CAS  Google Scholar 

  • Troeh, F. R., & Thompson, L. M. (1993). Soils and soil fertility (6th ed.). New York: Oxford University Press.

    Google Scholar 

  • Van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17, 1–10.

    Article  Google Scholar 

  • Versari, A., Laurie, F. V., Ricci, A., Laghi, L., & Parpinello, G. P. (2014). Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 60, 2–18.

    Article  CAS  Google Scholar 

  • Wilson, J. E. (1998). Terroir: The role of geology, climate, and culture in the making of French Wines (Wine Wheels). Hardcover.

  • Zeng, F., Tian, H., Wang, Z., An, Y., Gao, F., Zhang, L., et al. (2003). Effect of rare element europium on amaranthin synthesis in Amarathus caudatus seedlings. Biological Trace Element Research, 93, 271–282.

    Article  CAS  Google Scholar 

  • Zhao, H., Guo, B., Wei, Y., Zhang, B., Sun, S., Zhang, L., et al. (2011). Determining the geographic origin of wheat using multielement analysis and multivariate statistics. Journal of Agricultural and Food Chemistry, 59, 4397–4402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors owe thanks to Renzo Tassinari for technical advice and experimental support, and Nunziata Picone, Guglielmo Sardella, Bartolo Cambria and Salvatore D’Amico for their support in the sampling campaign. The authors also wish to thank Dr. Milvia Chicca for useful suggestions in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pepi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix Table A1

Pearson correlation coefficient among soil samples from Lami, Leni and Pianogreca. Values in bold are statistically significant with p value < 0.05. (XLSX 64 kb)

Appendix Table A2

Pearson correlation coefficient among caper samples from Lami, Leni and Pianogreca. Values in bold are statistically significant with p value < 0.05. (XLSX 54 kb)

Appendix Fig. A.1

Diagrams of Na2O + K2O versus SiO2. (a) (Le Bas et al. 1986) and K2O versus SiO2. (b) (Ewart 1982). Concentrations of oxides are expressed in % (w/w). (TIFF 8516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepi, S., Sardella, A., Bonazza, A. et al. Geochemical caper fingerprints as a tool for geographical origin identification. Environ Geochem Health 40, 1385–1403 (2018). https://doi.org/10.1007/s10653-017-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0063-y

Keywords

Navigation