Skip to main content

Advertisement

Log in

Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Central European floodplain soils are often contaminated with potentially toxic metals. The prediction of their aqueous concentrations is a prerequisite for an assessment of environmental concerns. We tested the aqueous concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) derived from multi-surface adsorption modelling (on hydrous iron, aluminum and manganese oxides, clay and soil organic matter) against those analyzed in situ in the soil solution of four horizons of floodplain soils at the Elbe River, Germany. The input data for the reactive metals were derived from a seven-step sequential extraction scheme or from extraction with 0.43 M nitric acid (HNO3) and evaluated in four modelling scenarios. In all scenarios, measured and modelled concentrations were positively related, except partially for Pb. Close reproduction of the measured data was obtained using measured data of accompanying cations and anions together with amounts of reactive metals from both the sequential extraction or from 0.43 M HNO3 extraction, except for Cu, which was often strongly overestimated, and partially Cd. We recommend extraction with 0.43 M HNO3 to quantify reactive metals in soil because the modelling results were metal-specific with better or equal results using the single extractant, the application of which is also less laborious. Approximations of ion concentrations and water contents yielded similar results. Modelled solid-phase speciation of metals varied with pH and differed from that from sequential extraction. Multi-surface modelling may be an effective tool to predict both aqueous concentrations and solid-phase speciation of metals in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • BBodSchV. (1999). Verordnung zur Durchführung des Bundes-Bodenschutzgesetzes (Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV vom 16.7.1999). BGBl, I.1554.

  • Bonten, L. T. C., Groenenberg, J. E., Meesenburg, H., & de Vries, W. (2011). Using advanced surface complexation models for modelling soil chemistry under forest: Solling forest, Germany. Environmental Pollution, 159, 2831–2839.

    Article  CAS  Google Scholar 

  • Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.

    Article  CAS  Google Scholar 

  • Cancès, B., Ponthieu, M., Castrec-Rouelle, M., Aubry, E., & Benedetti, M. F. (2003). Metal ions speciation in a soil and its solution: Experimental data and model results. Geoderma, 113, 341–355.

    Article  Google Scholar 

  • Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2004). Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environmental Science and Technology, 38, 4390–4395.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, R., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • Ford, R. G., Kemner, K. M., & Bertsch, P. M. (1999). Influence of sorbate-sorbent interactions on the crystallization kinetics of nickel- and lead-ferrihydrite coprecipitates. Geochimica et Cosmochimica Acta, 63, 39–48.

    Article  CAS  Google Scholar 

  • Fulda, B., Voegelin, A., Maurer, F., Christl, I., & Kretzschmar, R. (2013). Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study. Environmental Science and Technology, 47, 10903–10911.

    Article  CAS  Google Scholar 

  • Groenenberg, J. E., & Lofts, S. (2014). The use of assemblage models to describe trace element partitioning, speciation, and fate: A review. Environmental Toxicology and Chemistry, 33, 2181–2196.

    Article  CAS  Google Scholar 

  • Groenenberg, J. E., Römkens, P. F. A. M., Comans, R. N. J., Luster, J., Pampura, T., Shotbolt, L., et al. (2010). Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data. European Journal of Soil Science, 61, 58–73.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2013). Visual MINTEQ 3.0 program, http://www.lwr.kth.se/english/OurSoftWare/Vminteq/index.html.

  • Händel, M., Rennert, T., & Totsche, K. U. (2013). Synthesis of cryptomelane- and birnessite-type manganese oxides at ambient pressure and temperature. Journal of Colloid and Interface Science, 405, 44–50.

    Article  Google Scholar 

  • ISO/DIS 17586. (2016). Soil quality: Extraction of trace elements using dilute nitric acid. Draft International Standard. Reference number: ISO/DIS 17586:2016(E). ISO/TC 190/SC 3 Secretariat: DIN.

  • Karamalidis, A. K., & Dzombak, D. A. (2011). Surface complexation modeling: Gibbsite. New York: Wiley.

    Google Scholar 

  • Kim, N. D., & Fergusson, J. E. (1991). Effectiveness of commonly used sequential extraction technique in determining the speciation of cadmium in soils. Science of the Total Environment, 105, 191–209.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A, 151, 147–166.

    Article  CAS  Google Scholar 

  • Kraepiel, A. M. L., Keller, K., & Morel, F. M. M. (1998). On the acid-base chemistry of permanently charged minerals. Environmental Science and Technology, 32, 2829–2838.

    Article  CAS  Google Scholar 

  • Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., van Gestel, C. A. M., Hein, T., et al. (2009). How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution, 157, 3336–3346.

    Article  CAS  Google Scholar 

  • McKenzie, R. M. (1980). The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 18, 61–73.

    Article  CAS  Google Scholar 

  • Mejia, J., Roden, E. E., & Ginder-Vogel, M. (2016). Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science and Technology, 50, 3580–3588.

    Article  CAS  Google Scholar 

  • Milne, C. J., Kinniburgh, D. G., van Riemsdijk, W. H., & Tipping, E. (2003). Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environmental Science and Technology, 37, 958–971.

    Article  CAS  Google Scholar 

  • Peña, J., Kwon, K. D., Refson, K., Bargar, J. R., & Sposito, G. (2010). Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochimica et Cosmochimica Acta, 74, 3076–3089.

    Article  Google Scholar 

  • Ren, Z.-L., Sivry, Y., Dai, J., Tharaud, M., Cordier, L., & Benedetti, M. F. (2015). Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil. European Journal of Soil Science, 66, 973–982.

    Article  CAS  Google Scholar 

  • Rennert, T., Meißner, S., Rinklebe, J., & Totsche, K. U. (2010). Dissolved inorganic contaminants in a floodplain soil: Comparison of in situ soil solutions and laboratory techniques. Water, Air, and Soil Pollution, 209, 489–500.

    Article  CAS  Google Scholar 

  • Rennert, T., & Rinklebe, J. (2010). Release of Ni and Zn from contaminated floodplain soils under saturated flow conditions. Water, Air, and Soil Pollution, 205, 93–105.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Stubbe, A., Staerk, H.-J., Wennrich, R., & Neue, H. U. (2005). Factors controlling the dynamics of As, Cd, Zn and Pb in alluvial soils of the Elbe river (Germany). In W. G. Lyon, J. Hong, & R. K. Reddy (Eds.), Proceedings of environmental science and technology (pp. 265–270). New Orleans: American Science Press.

    Google Scholar 

  • Sauvé, S., McBride, M. B., Norvell, W. A., & Hendershot, W. H. (1997). Copper solubility and speciation of in situ contaminated soils: Effects of copper level, pH and organic matter. Water, Air, and Soil Pollution, 100, 133–149.

    Article  Google Scholar 

  • Scheinost, A. C., Kretzschmar, R., Pfister, S., & Roberts, D. R. (2002). Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Environmental Science and Technology, 36, 5021–5028.

    Article  CAS  Google Scholar 

  • Schröder, T. J., van Riemsdijk, W. H., van der Zee, S. E. A. T. M., & Vink, J. P. M. (2008). Monitoring and modelling of the solid-solution partitioning of metals and As in a river floodplain redox sequence. Applied Geochemistry, 23, 2350–2363.

    Article  Google Scholar 

  • Schwertmann, U. (1964). Differenzierung der Eisenoxide des Bodens durch Extraktion mit saurer Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202.

    Article  CAS  Google Scholar 

  • Shaheen, S., & Rinklebe, J. (2014). Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma, 228–229, 142–159.

    Article  Google Scholar 

  • Tipping, E., Hetherington, N. B., Hilton, J., Thompson, D. W., Bowles, E., & Hamilton-Taylor, J. (1985). Artifacts in the use of selective chemical extraction to determine distributions of metals between oxides of manganese and iron. Analytical Chemistry, 57, 1944–1946.

    Article  CAS  Google Scholar 

  • Tonkin, J. W., Balistrieri, L. S., & Murray, J. W. (2004). Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Applied Geochemistry, 19, 29–53.

    Article  CAS  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., Lofts, S., Tipping, E., & van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science and Technology, 36, 4804–4810.

    Article  CAS  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., & van Riemsdijk, W. H. (2001). Contribution of individual sorbents to the control of heavy metal activity in a sandy soil. Environmental Science and Technology, 35, 4436–4443.

    Article  CAS  Google Scholar 

  • Wolt, J. D. (1994). Soil solution chemistry. New York: Wiley.

    Google Scholar 

  • Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505–509.

    Google Scholar 

Download references

Acknowledgments

Various data were gained by a research grant of the Ministry of Agriculture and Environment, of the European Fond for Regional Development (EFRE) and the Department of Environmental Protection (LAU) of the Federal German state of Saxony-Anhalt (FKZ: 76213/08/01), for which the authors thank. We also thank Mrs. A. Böttcher, Mr. H. Dittrich, Mr. T. Swaton, Dr. M. Overesch and Mr. C. Vandenhirtz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Rennert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rennert, T., Rabus, W. & Rinklebe, J. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils. Environ Geochem Health 39, 331–344 (2017). https://doi.org/10.1007/s10653-016-9859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9859-4

Keywords

Navigation