Skip to main content

Advertisement

Log in

Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

High-F groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F groundwaters were characterized by hydrochemical types of Na–HCO3 and Na–SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F enrichment in groundwater included weakly alkaline pH (7.2–8.9), low concentration of Ca2+, and high concentrations of HCO3 and Na+. Calcite and fluorite were the main minerals controlling F concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca2+ and Mg2+ and led to more free mobility of F in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 were the more important processes for F enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F concentration, which was considered to be the potential drinking water resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu Jabal, M. S., Abustan, I., Rozaimy, M. R., & Al-Najar, H. (2014). Fluoride enrichment in groundwater of semi-arid urban area: Khan Younis City, southern Gaza Strip (Palestine). Journal of African Earth Sciences, 100, 259–266.

    Article  CAS  Google Scholar 

  • Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., & Federico, C. (2003). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Applied Geochemistry, 18, 863–882.

    Article  CAS  Google Scholar 

  • Alarcón-Herrera, M. T., Bundschuh, J., Nath, B., Nicolli, H. B., Gutierrez, M., Reyes-Gomez, V. M., et al. (2013). Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. Journal of Hazardous Materials, 262, 960–969.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Ashley, R., & Burley, M. (1995). Controls on the occurrence of fluoride in groundwater in the Rift Valley of Ethiopia. Groundwater quality (pp. 45–54). London: Chapman & Hall.

    Google Scholar 

  • Ayoob, S., & Gupta, A. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Reviews in Environment Science and Technology, 36, 433–487.

    Article  CAS  Google Scholar 

  • Battaleb-Looie, S., Moore, F., Jafari, H., Jacks, G., & Ozsvath, D. (2012). Hydrogeochemical evolution of groundwaters with excess fluoride concentrations from Dashtestan, South of Iran. Environmental Earth Sciences, 67, 1173–1182.

    Article  CAS  Google Scholar 

  • Bian, J. M., Zha, E. S., Tang, J., Ma, L., & Chen, G. (2010). Inverse geochemical modeling of arsenic groundwater at arseniasis area in the western of Jilin province. Journal of Jilin University, 40(5), 1098–1103. (in Chinese with English Abstract).

    CAS  Google Scholar 

  • Black, C. A., Evans, D., & White, J. (1965). Methods of soil analysis. Madison: American Society of Agronomy.

    Google Scholar 

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S.-Y., Kwon, J.-S., et al. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385, 272–283.

    Article  CAS  Google Scholar 

  • Chaudhuri, S., & Ale, S. (2014). Evaluation of long-term (1960–2010) groundwater fluoride contamination in Texas. Journal of Environmental Quality, 43(4), 1404–1416.

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. Boca Raton: CRC Press.

    Google Scholar 

  • Cronin, S. J., Neall, V., Lecointre, J., Hedley, M., & Loganathan, P. (2003). Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 121, 271–291.

    Article  CAS  Google Scholar 

  • D’Alessandro, W., Bellomo, S., Parello, F., Brusca, L., & Longo, M. (2008). Survey on fluoride, bromide and chloride contents in public drinking water supplies in Sicily (Italy). Environmental Monitoring and Assessment, 145, 303–313.

    Article  CAS  Google Scholar 

  • Dar, M. A., Sankar, K., & Dar, I. A. (2011). Fluorine contamination in groundwater: A major challenge. Environmental Monitoring and Assessment, 173, 955–968.

    Article  CAS  Google Scholar 

  • Davies, T. (2008). Environmental health impacts of East African Rift volcanism. Environmental Geochemistry and Health, 30, 325–338.

    Article  CAS  Google Scholar 

  • Dhiman, S., & Keshari, A. K. (2006). Hydrogeochemical evaluation of high-fluoride groundwaters: A case study from Mehsana District, Gujarat, India. Hydrological Sciences Journal, 51, 1149–1162.

    Article  CAS  Google Scholar 

  • Ducci, D., & Sellerino, M. (2012). Natural background levels for some ions in groundwater of the Campania region (southern Italy). Environmental Earth Sciences, 67(3), 683–693.

    Article  CAS  Google Scholar 

  • Edmunds, M., & Smedley, P. (2005). Fluoride in natural waters. In O. Selinus, B. J. Alloway, J. A. Ceneno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 301–329). Amsterdam: Elsevier.

    Google Scholar 

  • Fan, J. J., Tong, Y. Q., Li, J. Y., Wang, L. X., Li, R., & Liu, Z. Y. (2008). Affecting factors of high-fluorine water in our country and scheme to avoid fluorosis. Safety and Environmental Engineering, 15(1), 14–16. (in Chinese with English Abstract).

    CAS  Google Scholar 

  • Flaathen, T. K., & Gislason, S. R. (2007). The effect of volcanic eruptions on the chemistry of surface waters: The 1991 and 2000 eruptions of Mt. Hekla, Iceland. Journal of Volcanology and Geothermal Research, 164, 293–316.

    Article  CAS  Google Scholar 

  • Fuge, R. (1988). Sources of halogens in the environment, influences on human and animal health. Environmental Geochemistry and Health, 10(2), 51–61.

    Article  CAS  Google Scholar 

  • Fuhong, R., & Shuqin, J. (1988). Distribution and formation of high-fluorine groundwater in China. Environmental Geology and Water Sciences, 12, 3–10.

    Article  Google Scholar 

  • Gaciri, S., & Davies, T. (1993). The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology, 143, 395–412.

    Article  CAS  Google Scholar 

  • Gao, S., Sun, R., Wei, Z., Zhao, H., Li, H., & Hu, F. (2009). Size-dependent defluoridation properties of synthetic hydroxyapatite. Journal of Fluorine Chemistry, 130, 550–556.

    Article  CAS  Google Scholar 

  • Gat, J. R. (1980). The isotopes of hydrogen and oxygen in precipitation. Handbook of environmental isotope geochemistry (pp. 21–47). New York: Elsevier.

    Google Scholar 

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, D., Wen, D. G., Wu, Y., Ni, P., Jiang, Y. X., et al. (2014). Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: Evidences from chemical and isotopic characteristics. Science of the Total Environment, 490, 590–602.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 27, 2187–2196.

    Article  CAS  Google Scholar 

  • Handa, B. (1975). Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater, 13, 275–281.

    Article  CAS  Google Scholar 

  • He, J., An, Y., & Zhang, F. (2013). Geochemical characteristics and fluoride distribution in the groundwater of the Zhangye Basin in Northwestern China. Journal of Geochemical Exploration, 135, 22–30.

    Article  CAS  Google Scholar 

  • Hitchon, B. (1995). Fluorine in formation waters, Alberta Basin, Canada. Applied Geochemistry, 10, 357–367.

    Article  CAS  Google Scholar 

  • Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. (2005). Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20, 221–228.

    Article  CAS  Google Scholar 

  • Jain, C. K. (2005). Fluoride contamination in ground water. In J. Lehr, J. Keeley, & J. J. Lehr (Eds.), Water encyclopedia (pp. 130–135). New Jersey: Wiley.

    Google Scholar 

  • Karthikeyan, M., Satheesh Kumar, K., & Elango, K. (2009). Conducting polymer/alumina composites as viable adsorbents for the removal of fluoride ions from aqueous solution. Journal of Fluorine Chemistry, 130, 894–901.

    Article  CAS  Google Scholar 

  • Kim, S. H., Kim, K., Ko, K. S., Kim, Y., & Lee, K. S. (2012). Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere, 87, 851–856.

    Article  CAS  Google Scholar 

  • Kumar, E., Bhatnagar, A., Ji, M., Jung, W., Lee, S. H., Kim, S. J., et al. (2009). Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research, 43, 490–498.

    Article  CAS  Google Scholar 

  • Kundu, N., Panigrahi, M., Tripathy, S., Munshi, S., Powell, M., & Hart, B. (2001). Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environmental Geology, 41, 451–460.

    Article  CAS  Google Scholar 

  • Lahermo, P., Sandström, H., & Malisa, E. (1991). The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications. Journal of Geochemical Exploration, 41(1–2), 65–79.

    Article  CAS  Google Scholar 

  • Lavado, R., & Reinaudi, N. (1979). Fluoride in salt affected soils of La Pampa (Republica Argentina). Fluoride, 9, 153–162.

    Google Scholar 

  • Leybourne, M. I., Peter, J. M., Johannesson, K. H., & Boyle, D. R. (2008). The Lake St. Martin bolide has a big impact on groundwater fluoride concentrations. Geology, 36, 115–118.

    Article  CAS  Google Scholar 

  • Liu, Q., Guo, H., & Shan, Y. (2010). Adsorption of fluoride on synthetic siderite from aqueous solution. Journal of Fluorine Chemistry, 131, 635–641.

    Article  CAS  Google Scholar 

  • Lu, G., Sonnenthal, E. L., & Bodvarsson, G. S. (2003). Implications of halide leaching on 36Cl studies at Yucca Mountain, Nevada. Water Resources Research, 39(12), 3-1–3-15.

  • Mamatha, P., & Rao, S. M. (2010). Geochemistry of fluoride rich groundwater in Kolar and Tumkur Districts of Karnataka. Environmental Earth Sciences, 61, 131–142.

    Article  CAS  Google Scholar 

  • Meenakshi, Garg, V. K., Kavita, Renuka, & Malik, A. (2004). Groundwater quality in some villages of Haryana, India: Focus on fluoride and fluorosis. Journal of Hazardous Materials, 106B, 85–97.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Scanlon, B. R., Fryar, A. E., Saha, D., Ghosh, A., Chowdhuri, S., & Mishra, R. (2012). Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): Influence of geology and geomorphology. Geochimica et Cosmochimica Acta, 90, 283–302.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water-rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727–1740.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., & Jenne, E. A. (1977). Fluorite solubility equilibria in selected geothermal waters. Geochimica et Cosmochimica Acta, 41, 175–188.

    Article  CAS  Google Scholar 

  • Óskarsson, N. (1980). The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. Journal of Volcanology and Geothermal Research, 8, 251–266.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. (1999). User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Geological Survey Water Resource Inv, pp 99–4259.

  • Perel’man, A. I., & Levinson, A. (1977). Geochemistry of elements in the supergene zone (pp. 266–274). Jerusalem: Keter Publishing House Ltd. (translated from Russian).

    Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology, 56, 317–326.

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Usmani, T. H., Bashir, E., Khan, F. A., & Bhanger, M. I. (2009). Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. Journal of Hazardous Materials, 171, 424–430.

    Article  CAS  Google Scholar 

  • Rango, T., Bianchini, G., Beccaluva, L., Ayenew, T., & Colombani, N. (2009). Hydrogeochemical study in the Main Ethiopian Rift: New insights to the source and enrichment mechanism of fluoride. Environmental Geology, 58, 109–118.

    Article  CAS  Google Scholar 

  • Rango, T., Vengosh, A., Jeuland, M., Tekle-Haimanot, R., Weinthal, E., Kravchenko, J., et al. (2014). Fluoride exposure from groundwater as reflected by urinary fluoride and children’s dental fluorosis in the Main Ethiopian Rift Valley. Science of the Total Environment, 496, 188–197.

    Article  CAS  Google Scholar 

  • Rao, N. S. (2003). Groundwater quality: Focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India. Hydrological Sciences Journal, 48, 835–847.

    Article  CAS  Google Scholar 

  • Rao, N. S. (2009). Fluoride in groundwater, Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 152, 47–60.

    Article  CAS  Google Scholar 

  • Rao, N. R., Rao, N., Rao, K. S. P., & Schuiling, R. (1993). Fluorine distribution in waters of Nalgonda district, Andhra Pradesh, India. Environmental Geology, 21, 84–89.

    Article  CAS  Google Scholar 

  • Reddy, D. V., Nagabhushanam, P., Sukhija, B. S., Reddy, A. G. S., & Smedley, P. L. (2010). Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chemical Geology, 269, 278–289.

    Article  CAS  Google Scholar 

  • Rowland, H. A. L., Polya, D. A., Lloyd, J. R., & Pancost, R. D. (2006). Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Organic Geochemistry, 37, 1101–1114.

    Article  CAS  Google Scholar 

  • Saxena, V., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43, 731–736.

    CAS  Google Scholar 

  • Shah, M. T., & Danishwar, S. (2003). Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province,Pakistan. Environmental Geochemistry and Health, 25, 475–481.

    Article  Google Scholar 

  • Shan, P. F. (1989). A systematic analysis on the distributional law of salt-bitter water, high-fluoride phreatic water and geomorphologic setup in Ningxia. Journal of Ningxia University (Natural Science), 4, 63–68. (in Chinese with English Abstract).

    Google Scholar 

  • Smet, J. (1992) Fluoride in drinking water. In: J. E. Frencken (Ed.), Endemic fluorosis in developing countries. Report of a symposium held in Delft, Netherlands (pp. 10–19. Leiden: TNO Institute for preventive Health Care. April 27, 1990.

  • Sreedevi, P., Ahmed, S., Made, B., Ledoux, E., & Gandolfi, J.-M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environmental Geology, 50, 1–11.

    Article  CAS  Google Scholar 

  • Stallard, R., & Edmond, J. (1983). Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal Geophysical Research, 88(C14), 9671–9688.

    Article  CAS  Google Scholar 

  • Su, C., Wang, Y., Xie, X., & Li, J. (2012). Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China. Journal of Geochemical Exploration, 135, 79–92.

    Article  CAS  Google Scholar 

  • Sujana, M. G., Pradhan, H., & Anand, S. (2009). Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. Journal of Hazardous Materials, 161, 120–125.

    Article  CAS  Google Scholar 

  • Susheela, A. (1999). Fluorosis management programme in India. Current Science, 77, 1250–1256.

    Google Scholar 

  • Tamta, S. R. (1994). Possible mechanism for concentration of fluoride in groundwater. Bhu-Jal News, 6, 5–11.

    Google Scholar 

  • Tekle-Haimanot, R., Melaku, Z., Kloos, H., Reimann, C., Fantaye, W., Zerihun, L., & Bjorvatn, K. (2006). The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Science of the Total Environment, 367, 182–190.

    Article  CAS  Google Scholar 

  • Vivona, R., Preziosi, E., Madé, B., & Giuliano, G. (2007). Occurrence of minor toxic elements in volcanic-sedimentary aquifers: A case study in central Italy. Hydrogeology Journal, 15, 1183–1196.

    Article  CAS  Google Scholar 

  • Wang, G. X., & Cheng, G. D. (2001). Fluoride distribution in water and the governing factors of environment in arid north-west China. Journal of Arid Environments, 49, 601–614.

    Article  Google Scholar 

  • Wang, Y., Shvartsev, S. L., & Su, C. (2009). Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Applied Geochemistry, 24, 641–649.

    Article  CAS  Google Scholar 

  • Wang, G. Q., Xiao, B. Y., Huang, Y. Z., Yao, H., Hu, Y., Qian, L. C., et al. (1995). Epidemiological studies on endemic fluorosis and arsenism in Xinjiang. Chinese Journal of Preventive Medicine, 29(1), 30–33. (in Chinese with English Abstract).

    CAS  Google Scholar 

  • Yu, Q. S., Yu, Y. Q., Yin, B. X., Yang, J. Y., & Yang, J. P. (2005). Natural gochemical environment and endemic fluorosis in Ningxia. Ningxia Engineering Technology, 4(3), 218–224. (in Chinese with English Abstract).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41222020 and 41172224), the Program of China Geological Survey (12120113103700), the Fundamental Research Funds for the Central Universities (No. 2652013028), and the Fok Ying-Tung Education Foundation, China (Grant No. 131017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Guo, H., Zhang, D. et al. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Environ Geochem Health 38, 275–290 (2016). https://doi.org/10.1007/s10653-015-9716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9716-x

Keywords

Navigation