Skip to main content
Log in

Groundwater chemistry and arsenic mobilization in the Holocene flood plains in south-central Bangladesh

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A comparative study of arsenic enrichment in the Bengal Delta (BD) was carried out in three alluvial aquifers in south-central Bangladesh. Investigated sites included Sonargaon in Narayanganj, Chandina in Comilla and Sirajdikhan in Munshiganj districts. At all sites samples from different depths were collected, and water chemistry and redox status vs. depth trends were determined. The concentrations of DOC and HCO3 were highest at Sirajdikhan site, while at the Sonargaon and Chandina sites the concentrations were lower. On the contrary, the NH4 + concentration was high at the Chandina site as compared to the other sites. There was a good match between dissolved As and Fe at the Sirajdikhan and Sonargaon sites, but not at the Chandina site. The dissolved aqueous concentration of Mn was low at the Chandina site, which suggested that the Mn(IV) redox buffering step was missing. Speciation modeling indicated a possibility of siderite precipitation at all sites, but precipitation of rhodochrosite only at the Sonargaon and Sirajdikhan sites. At the Sirajdikhan site, the log \( {\text{P}}_{{{\text{CO}}_{ 2} }} \) values were very high (−1.37), which revealed the production of CO2 in redox processes. Principal component analysis (PCA) indicated an impact of sea water and redox status of different samples. These results suggest that the dissolved As is de-coupled from dissolved Mn because when released, As is re-adsorbed onto the Fe(III) minerals in solid phase, as well as from dissolved Fe when precipitation of Fe(II) minerals controls the aqueous concentrations of Fe. In addition, several other concurrent redox processes may exert kinetic constraints depending on refractory characteristics of Fe(III) minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 1127–1137.

    Article  CAS  Google Scholar 

  • Ahmed, K. M. (1994). Hydrogeology of the Dupi Tila aquifer of the Barind Tract, NW Bangladesh. Ph.D. Thesis, University of London, 414 pp (Unpublished).

  • Ahmed, K. M. (2005). Management of groundwater arsenic disaster in Bangladesh. In J. Bundschuh, P. Bhattacharya, & D. Chandrasekharam (Eds.), Natural arsenic in groundwater: occurrences, remediation and management (pp. 283–296). London: Taylor & Francis Group.

    Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19(2), 181–200.

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Hoque, M., Hasan, M. K., Ravenscroft, P., & Chowdhury, L. R. (1998). Origin and occurrence of water well methane gas in Bangladesh aquifers. Journal of Geological Society of India, 51, 697–708.

    CAS  Google Scholar 

  • Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., et al. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19(2), 215–230.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36, 3096–3103.

    Article  CAS  Google Scholar 

  • Artinger, R., Buckau, G., Geyer, S., Fritz, P., Wolf, M., & Kim, J. I. (2000). Characterization of groundwater humic substances: Influence of sedimentary organic carbon. Applied Geochemistry, 15(1), 97–116.

    Article  CAS  Google Scholar 

  • BGS & DPHE (2001) Arsenic contamination of groundwater in Bangladesh. Vol. 2 Final Report, BGS Technical Report WC/00/19.

  • Bhattacharya, A., Routh, J., Saraswathy, A., Jacks, G., & Bhattacharya, P. (2003). Influence of microbes on the mobilization and speciation of arsenic from mine tailings in Adak, Vasterbotten district, Sweden. In G. R. Gobran & N. Lepp (Eds.), Proceedings of the 7th International Conference on the Biogeochemistry of Trace Elements, Volume 2 (Symposia) Symposium 1. Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, June 15–19, 2003, Uppsala, Sweden, pp. 58–59.

  • Bhattacharya, P. (2002). Arsenic contaminated groundwater from the sedimentary aquifers of south-east Asia. In E. Bocanegra, D. Martinez, & H. Massone (Eds.), Groundwater and Human Development, Proceedings of the XXXII IAH and VI AHLSUD Congress, Mar del Plata, Argentina, October 22–25, 2002, pp. 357–363.

  • Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Broms, S., Fogelström, J., Jacks, G., et al. (2006). Mobility of arsenic in groundwater in a part of Brahmanbaria district, NE Bangladesh. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing arsenic in the environment: From soil to human health (pp. 95–115). Melbourne, Australia: CSIRO Publishing.

    Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: Options for safe drinking water supply. International Journal of Water Resource Management, 13, 79–92.

    Article  Google Scholar 

  • Bhattacharya, P., Frisbie, S. H., Smith, E., Naidu, R., Jacks, G., Sarkar, B., et al. (2002a). Arsenic in the environment: A global perspective. In B. Sarkar (Ed.), Handbook of heavy metals in the environment (pp. 145–215). New York: Marcell Dekker Inc.

    Google Scholar 

  • Bhattacharya, P., Jacks, G., Jana, J., Sracek, A., Gustafsson, J. P., & Chatterjee, D., (2001). Geochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: implications on arsenic contamination in groundwater. In G. Jacks, P. Bhattacharya, & A. A. Khan (Eds.), Groundwater Arsenic Contamination in the Bengal Delta Plain of Bangladesh. KTH Special Publication. TRITA-AMI Report 3084 (pp. 21–40).

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., Routh, J., et al. (2002b). Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 538–545.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: Biology and chemistry. Science of the Total Environment, 379, 109–120. doi:10.1016/j.scitotenv.2007.02.037.

    Article  CAS  Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). The stabilities of calcium arsenates. Journal of Hazardous. Material, 69(2), 197–207.

    Article  CAS  Google Scholar 

  • Brammer, H. (1996). The geography of the soils of Bangladesh. Dhaka, Bangladesh: University Press Ltd.

    Google Scholar 

  • Breit, G. N., Foster, A. L., Sanzalone, R. F., Yount, J. C., Whitney, J. W., Welch, A. H., et al. (2001). Arsenic cycling in eastern Bangladesh: The role of phyllosilicates. Geological Society of America, Abstracts with Programs, 32(7), A192.

  • Broms, S., & Fogelström, J. (2001). Field investigations of arsenic-rich groundwater in the Bengal Delta Plain, Bangladesh: An interbasinal comparison of mechanisms for arsenic translocation and test of low-cost remediation technology. M.Sc. Thesis, Series 2001:18, Department of Land and Water Engineering, KTH, Stockholm, Sweden.

  • Buckau, G., Artinger, R., Geyer, S., Wolf, M., Fritz, P., & Kim, J. I. (2000). Groundwater in-situ generation of aquatic humic and fulvic acids and the mineralization of sedimentary organic carbon. Applied Geochemistry, 15(6), 819–832.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Wolthers, M., Chatterjee, D., & Charlet, L. (2007). Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal of Colloid and Interface Science, 309(2), 392–401.

    Article  CAS  Google Scholar 

  • Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.

    CAS  Google Scholar 

  • Correll, R., Huq, S. M. I., Smith, E., Owens, G., & Naidu, R. (2006). Dietary intake of arsenic from crops: Overview from the Bangladesh study. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing arsenic in the environment: From soil to human health. (pp. 255–271). Melbourne, Australia: CSIRO Publishing.

    Google Scholar 

  • Dodd, J., Large, D. J., Fortey, N. J., Milodowski, A. E., & Kemi, S. (2000). A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud. Environmental Geochemistry and Health, 22, 281–296.

    Article  CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., Basu, A. R., & Peters, S. L. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research 38(9), 12-1–12-18.

    Google Scholar 

  • Farid, A. T. M., Roy, K. C., Hossian, K. M., & Sen, S. (2003). A study of arsenic contaminated irrigation water and its carried over effect on vegetables. In M. Ahmed, M. A. Ali, & Z. Adeel (Eds.), Fate of arsenic in the environment (pp. 113–121). Dhaka: BUET and UNU.

    Google Scholar 

  • Foster, A. L., Breit, G. N., Welch, A. H., Whitney, J. W., Yount, J. C., Islam, M. S., et al. (2000). In-situ identification of arsenic species in soil and aquifer sediment from Ramrail, Brahmanbaria, Bangladesh. Eos Transactions of the American Geophysical Union, 81(48), 523.

    Google Scholar 

  • Frisbie, S. H., Ortega, R., Maynard, D. M., & Sarkar, B. (2002). The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environmental Health Perspective, 110(11), 1147–1153.

    CAS  Google Scholar 

  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for educational and data analysis. Paleontologia Electronica 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Hasan, M. A., Ahmed, K. M., Sracek, O., Bhattacharya, P., von Brömssen, M., Broms, S., et al. (2007). Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrogeology Journal, 15, 1507–1522.

    Article  CAS  Google Scholar 

  • Hasan, M. A., von Brömssen, M., Bhattacharya, P., Ahmed, K. M., Sikder, A. M., Jacks, G., & Sracek, O. Geochemistry and mineralogy of shallow alluvial aquifers in Daudkandi upazila in the Meghna flood plain, Bangladesh. Environmental Geology. doi: 10.1007/s00254-008-1319-8 (in press).

  • Horneman, A., van Geen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., et al. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68(17), 3459–3473.

    Article  CAS  Google Scholar 

  • Hoque, M., Ravenscroft, P., & Hasan, M. K. (2003). Investigation of groundwater salinity and gas problems in Southeast Bangladesh. In A. A. Rahman & P. Ravenscroft (Eds.), Groundwater resources and development in Bangladesh (pp. 373–390). Dhaka: The University Press Limited.

    Google Scholar 

  • Huq, S. M. I., Correll, R., & Naidu, R. (2006). Arsenic accumulation in food sources in Bangladesh. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing arsenic in the environment: From soil to human health (pp. 283–293). Melbourne, Australia: CSIRO Publishing (ISBN 0643068686).

  • Kent, D. B., & Fox, P. A. (2004). The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochemical Transactions, 5(1), 1–11.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal ant its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Ravencroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resources Research, 37, 109–117.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37, 229–234.

    Article  CAS  Google Scholar 

  • Meng, X., Korfiatis, G. P., Christodoulatos, C., & Bang, S. (2001). Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system. Water Research, 35, 2805–2810.

    Article  CAS  Google Scholar 

  • Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal Basin, East Pakistan and India. Geological Soceity of Americal Bulletin, 70, 319–342.

    Article  Google Scholar 

  • Mukherjee, A. B., & Bhattacharya, P. (2001). Arsenic in groundwater in the Bengal Delta Plain: Slow poisoning in Bangladesh. Environmental Reviews, 9(3), 189–220.

    Article  CAS  Google Scholar 

  • Mukherjee, A., von Bromssen, M., Scanlon, B. R., Bhattacharya, P., Fryar, A. E., Hasan, M. A., et al. (2008). Hydrogeochemical comparison between the Bhagirathi and Meghna sub-basins, Bengal basin, India and Bangladesh: Effects of overlapped redox zones on dissolved arsenic. Journal of Contaminant Hydrology, 99(1–4), 31–48.

    Article  CAS  Google Scholar 

  • Naidu, R., Smith, E., Huq, I., & Owens, G. (2008) Sorption and bioavailability of arsenic in selected Bangladesh soils. Environmental Geochemistry and Health. doi:10.1007/s10653-008-9229-y.

    Google Scholar 

  • Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of groundwater in Bangladesh. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users Guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. U.S. Geological Survey Water Resources Investigation Report 99-4259.

  • Ravenscroft, P. (2003). Overview of the hydrogeology of Bangladesh. In A. A. Rahman & P. Ravenscroft (Eds.), Groundwater resources and development in Bangladesh (pp. 43–86). Dhaka: The University Press Limited.

    Google Scholar 

  • Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of Bengal Basin: Distribution, field relations and hydrogeological setting. Hydogeology Journal, 13, 727–751.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and paleohydrological controls on pollution of groundwater by arsenic. In W. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Fourth International Conference on Arsenic Exposure and Health Effects.

  • Reimann, K.-U. (1993). Peat deposits of Bangladesh. In K.-U. Reimann (Ed.), The geology of Bangladesh. Berlin: Gebruder Borntraeger.

    Google Scholar 

  • Routh, J., Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Rahman, M. M. (2000). Arsenic geochemistry of Tala groundwater and sediments from Satkhira District, Bangladesh. Eos Transactions of the American Geophysical Union, 81(48), 550.

    Google Scholar 

  • Saunders, J. A., Lee, M. K., Uddin, A., Shahnewaz, M. Wilkin, R. T., Fayek, M., & Korte, N. E., (2005). Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry Geophysics Geosystems 6, Q04006. doi: 10.1029/2004GC000803.

  • SIS (1996). Water quality. Determination of alkalinity-Part2: Determination of carbonate alkalinity. (SS-EN ISO 9963-2), pp. 10.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organisation, 78(9), 1093–1103.

    CAS  Google Scholar 

  • Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., et al. (2007). Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of the Total Environment, 379(2–3), 133–150.

    Article  CAS  Google Scholar 

  • Swartz, C. H., Blute, N. K., Bodruzzaman, B., Ali, A., Brabander, D., Jay, J., et al. (2004). Mobility of arsenic in Bangladesh aquifer: Inferences from geochemical profiles, leaching data and mineralogical characterization. Geochimica et Cosmochimica Acta, 68(22), 4539–4557.

    Article  CAS  Google Scholar 

  • Umitsu, M. (1987). Late Quaternary sedimentary environment and landform evolution in the Bengal Lowland. Geographical Reviews of Japan (Series B), 60, 164–178.

    Google Scholar 

  • Umitsu, M. (1993). Late Quaternary sedimentary environments and landforms in the Ganges Delta. Sedimentary Geology, 83, 177–186.

    Article  Google Scholar 

  • Vencelides, Z., Sracek, O., & Prommer, H. (2007). Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic. Journal of Contaminant Hydrology, 89, 270–294.

    Article  CAS  Google Scholar 

  • von Brömssen, M., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Sracek, O., et al. (2007). Targeting low-arsenic aquifers in Matlab Upazila, Southeastern Bangladesh. Science of the Total Environment, 379(2–3), 121–132.

    Article  Google Scholar 

  • von Brömssen, M., Larsson, S. H., Bhattacharya, P., Hasan, M. A., Ahmed, K. M., Jakariya, M., et al. (2008). Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, Southeastern Bangladesh—implications for targeting low-As aquifers. Journal of Contaminant Hydrology, 99(1–4), 137–149.

    Article  Google Scholar 

  • Whiting, K. S. (1992). The thermodynamics and geochemistry of As with the application to subsurface waters at the Sharon Steel Superfund Site Midvale, Utah, M.Sc. thesis, Colorado School of Mines.

  • WHO. (2001). Arsenic in drinking water: Fact Sheet 210. URL: http://www.who.int/mediacentre/factsheets/fs210/en/print.html (Accessed on April 13, 2006).

  • WHO (2004). Guidelines for drinking-water quality (3rd edn., Vol. 1). Recommendations. Geneva: World Health Organization.

  • Yu, W. H., Harvey, C. M., & Harvey, C. F. (2003). Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating the health effects and potential remedies. Water Resources Research, 39(6), 1146. doi:10.1029/2002WR001327.

    Article  Google Scholar 

  • Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H. J., et al. (2004). Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 19(2), 201–214.

    Article  CAS  Google Scholar 

  • Zheng, Y., van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., et al. (2005). Geochemical and hydrogeological contrast between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implication for deeper aquifers as drinking water sources. Geochimica et Cosmochimica Acta, 69(22), 5203–5218.

    Article  CAS  Google Scholar 

  • Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34(22), 4747–4753.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out as a part of a research project funded by the Australian Council of International Agricultural Research and the CSIRO’s Contaminated Land and Water Environments Program at Adelaide, South Australia. PB thanks the CSIRO for providing the necessary funds for the field work in Bangladesh in January 2002 and the other infrastructural facilities. PB also acknowledges the financial assistance from the Swedish Research Council (VR) in the form of a travel grant, Swedish International Development Cooperation Agency (Sida-SAREC) and Swedish Research Council (VR-Sida), Swedish Asia Research Link Program through research grants SWE-1998-193 and 348-2003-4963, respectively, on the genesis of high-As groundwaters of Bangladesh. OS was partly supported by the grant MSM0021622412 of the Czech Ministry of Education, Youth and Sport. The authors would like to thank Anisur Rahman (Dhaka University) and Gary Owens (CSIRO) for the field work and Lester Smith and Julie Smith for the laboratory analyses at the chemical laboratory of CSIRO Land and Water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosun Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, P., Hasan, M.A., Sracek, O. et al. Groundwater chemistry and arsenic mobilization in the Holocene flood plains in south-central Bangladesh. Environ Geochem Health 31 (Suppl 1), 23–43 (2009). https://doi.org/10.1007/s10653-008-9230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9230-5

Keywords

Navigation