Skip to main content

Advertisement

Log in

Atmospheric mercury emissions from polluted gold mining areas (Venezuela)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil, waste rock and mud from mercury-gold amalgamation mining areas of El Callao (Venezuela) are highly enriched in Hg (0.5–500 µg g−1) relative to natural background concentrations (<0.1 µg g−1). Mercury fluxes to the atmosphere from twelve polluted sites of this area were measured in situ (6 a.m. to 8 p.m.) using a Plexiglas flux chamber connected to a portable mercury analyzer (model RA-915+; Lumex, St. Petersburg, Russia). Mercury fluxes ranged between 0.65 and 420.1 µg m−2 h−1, and the average flux range during the diurnal hours␣was 9.1–239.2 µg m−2 h−1. These flux values are five orders of magnitude higher than both reported world background Hg fluxes (1–69 ng m−2 h−1) and the regional values, which are in the range 2–10 ng m−2 h−1. The flux results obtained in this study are, however, similar to those measured at Hg polluted sites such as chloro-alkali plants or polymetallic ore mining districts (>100,000 ng m−2 h−1). The results from this study also show that Hg emissions from the soil are influenced by solar radiation, soil temperature and soil Hg concentration. Our data suggest that solar radiation may be the dominant factor affecting Hg° emission since the major species of mercury in polluted soil is Hg° (85–97% of total Hg). The simple release of Hg° vapor is probably the dominant process occurring with incident light in the field. The apparent activation energy for mercury emission indicates that the volatilization of mercury mainly occurred as a result of the vaporization of elemental mercury in soil. The degree of Hg emission differed significantly among the soil sites studied, which may be due to variations in soil texture, organic matter content and soil compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa, A. C, Jardim, W, Dorea, J. G, Fosberg, B, & Sousa, J. (2001). Hair mercury speciation as a function of gender, age and body mass index in inhabitants of the Negro River basin, Amazon, Brazil. Archives of Environmental Contamination and Toxicology, 40, 439–444.

    Article  Google Scholar 

  • Bash, J. O., Miller, D. R., Meyer, T. H., & Bresnahan, P. A. (2004). Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model. Atmospheric Environment, 38, 5683–5692.

    Article  Google Scholar 

  • Bergan, T, & Rodhe, H. (2001). Oxidation of elemental mercury in the atmosphere; constraints imposed by global scale modelling. Journal of Atmospheric Chemistry, 40, 191–212.

    Article  Google Scholar 

  • Betts, K. S. (2001). Arctic may be naturally generating reactive gaseous mercury. Environmental Science and Technology, 434A–435A.

  • Boudala, F. S., Folkins, I., Beauchamp, S, Tordon, R, Neima, J, & Johnson, B. (2000). Mercury flux measurements over air and water in Kejimkujik National Park, Nova Scotia. Water, Air and Soil Pollution, 122, 183–202.

    Article  Google Scholar 

  • Bullock, O. R, & Brehme, K. A (2002). Atmospheric mercury simulation using CMAQ model: Formulation description and analysis of wet deposition results. Atmospheric Environment, 36, 3135–2146.

    Article  Google Scholar 

  • Carpi, A, & Lindberg, S. E. (1997). Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environmental Science and Technology, 31, 2085–2091.

    Article  Google Scholar 

  • Carpi, A., & Lindberg, S. E. (1998). Application of a Teflon dynamic flux chamber for quantifying soil mercury fluxes: tests and results over background soils. Atmospheric Environment, 32, 873–882.

    Article  Google Scholar 

  • Cobos, D., Baker, J., & Natera, E. (2002). Conditional sampling for measuring mercury vapor fluxes. Atmospheric Environment, 36, 4309–4321.

    Article  Google Scholar 

  • Contreras, F., Romero, A., Adams, M., Garcia-Sanchez, A., & Santos, F. (2005). Efecto de la aplicación de␣arcillas adsorbentes y caliza en la inmovilizacion de Mercurio en suelos del Estado Bolivar. In: Actas del␣XVII Congreso Venezolano de la Ciencia del Suelo.

  • Drake, P. L., Rojas, M., Reh, C. M., Charles, A. M., & Jenkins, F. M. (2001). Occupational exposure to airborne mercury during gold mining operations near El Callao, Venezuela. International Archives of Environmental Health, 74, 206–212.

    Article  Google Scholar 

  • Ebinghaus, R., Tripathi, R. M., Wallschlager, D., & Lindberg, S. E. (1999). Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales. In: R. Ebinghaus, R. Turner, L. de Lacerda, O. Vasiliev, & W. Solomons (eds.), Mercury contaminated sites. Springer, Berlin Heidelberg New York, pp 1–50.

    Google Scholar 

  • Engle, M, Gustin, M., & Zhang, H. (2001). Quantifying natural source mercury missions from the Ivanhoe mining district, north-central Nevada, USA. Atmospheric Environment, 35, 3987–3997.

    Article  Google Scholar 

  • Engle, M. A., & Gustin, M. S., (2002). Scaling of atmospheric mercury emissions from three naturally enriched areas: Flowery Peak, Nevada; Peavine Peak, Nevada; and Long Valley Caldera, California. The Science of the Total Environment, 290, 91–104.

    Article  Google Scholar 

  • Farhana, Z., Shamim, R., Soghra, H., & Rizwan, K. (2005). Low dose mercury toxicity, human health. Environmental Toxicology and Pharmacology, 20 351–360.

    Google Scholar 

  • Ferrara, R., Maserti, B., Anderson, M., Hender, H., Ragnarson, P., & Svanderg, S. (1997). Mercury degassing rate from mineralised areas in the Mediterranean basin. Water, Air and Soil Pollution, 93, 59–66.

    Google Scholar 

  • Fostier, A. H., Forti, M. C., Guimarães, J. R., Melfi, A. J., Boulet, R., Espirito Santo, C. M., & Krug, F. J. (2000). Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapá State, Brazil). Science of the Total Environment, 260, 201–211.

    Article  Google Scholar 

  • Gillis, A., & Miller, D. R. (2000a). Some local environmental effects on mercury emission and absortion at a soil surface. Science of the Total Environment, 260, 191–200.

    Article  Google Scholar 

  • Gillis, A., & Miller, D. R. (2000b). Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber. Science of the Total Environment, 260, 181–189.

    Article  Google Scholar 

  • Gustin, M., Taylor, G., & Maxey, R. (1997). Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. Journal of Geophysical Research, 102, 3891–3898.

    Article  Google Scholar 

  • Gustin M., Rasmussen P., & Biester H. (1998). Mechanisms influencing the volatile loss of mercury from soil. Symposium volume Air and Waste Management Association meeting September (1998). Measurement of Air Toxics and Related Air Pollutants, 224–235.

  • Gustin, M., Lindberg, S. E., & Marsik, F. et al. (1999). Nevada Storms proyect: measurement of mercury emissions from naturally enriched surfaces. Journal of Geophysical Research, 104 D17, 21831–21844.

    Article  Google Scholar 

  • Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vetter, A., & Zhang, H. (2000). Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259, 61–72.

    Article  Google Scholar 

  • Gustin, M. S., Biester, H., & Kim, C. S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36, 3241–3254.

    Article  Google Scholar 

  • Gustin, M. S., Coolbaugh, M. F., Engle, M. A., & Fitzgerald, B. C. et al. (2003). Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environmental Geology, 43, 339–351.

    Google Scholar 

  • Jackson, T. A. (1997). Long-range atmospheric transport of mercury to ecosystems, and the anthropogenic emissions a critical review and evaluation of the published evidence. Environmental Reviews, 5, 99–120.

    Article  Google Scholar 

  • Kambey, J., Farrell, A., & Bendell-Young, L. (2001). Influence of illegal gold mining on mercury levels in fish of North Sulawesi´s Minahasa Peninsula, (Indonesia). Environmental Pollution, 114, 299–302.

    Article  Google Scholar 

  • Kim, K.Y, Kim, M.Y, & Lee, G. (2001). The soil-air exchange characteristic of total gaseous mercury from a large-scale municipal landfill area. Atmospheric Environment, 35, 3475–3493.

    Article  Google Scholar 

  • Lamborg, C. H, Fitzgerald, W. F, O`Donnell, J., & Torgerson, T. (2002). A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66, 1105–1118.

    Article  Google Scholar 

  • Lee, Y. H., Wangberg, I., & Munthe, J. (2003). Sampling and analysis of gas-phase methylmercury in ambient air. Science of the Total Environment, 304, 107–113.

    Article  Google Scholar 

  • Lide D. R. (Ed.). (1993). CRC handbook of chemistry and physics. CRC Press, Boca Raton.

    Google Scholar 

  • Lin, C. J., & Pehkomen, S. O. (1999). The chemistry of atmospheric mercury: A review. Atmospheric Environment, 33, 2067–2079.

    Article  Google Scholar 

  • Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M. J., & Lund, J. R. (1979). Atmospheric emission and plant uptake of mercury from agricultural soils near the Almadén mercury mine. Journal of Environmental Quality, 8, 572–578.

    Article  Google Scholar 

  • Lindberg, S. E., & Turner, R. R. (1977). Mercury emissions from chlorine-production solid waste deposits. Nature, 268, 133–136.

    Article  Google Scholar 

  • Lindberg, S. E, Kim, Y., Meyers, T., & Owens, J. (1995). A micrometeorological gradient approach for quantifying air/surface exchange of mercury vapour: tests over contaminated soils. Environmental Science Technolnology, 29, 126–135.

    Article  Google Scholar 

  • Lindberg, S. E, Hanson, P. J, Meyers, T. P, & Kim, K. M. (1998). Air/Surface Exchange of mercury vapor over forest: the need for a reassessment of continental biogenic emissions. Atmospheric Environment, 32, 895–908.

    Article  Google Scholar 

  • Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: Concentration and behavior of reactive gaseous mercury in ambient air. Environmental Science Technology, 32, 49–57.

    Article  Google Scholar 

  • Lindberg, S. E., Zhang, H., & Gustin, M. et al. (1999). Increase in mercury emissions from desert soils in response to rainfall irrigation. Journal of Geophysical Research, 104(D17), 21879–21888.

    Article  Google Scholar 

  • Lindqvist, O., Johansson, K., & Aastrup, M. et al. (1991). Mercury in the Swedish environment – recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution, 55, 1–262.

    Article  Google Scholar 

  • Liu, S., Nadim, F., & Perkins, C. et al. (2002). Atmospheric mercury monitoring survey in Beijing, China. Chemosphere, 48, 97–107.

    Article  Google Scholar 

  • Malm, O., De Freitas, M., Hissnauer, P., Rodríguez, W., & Neves Pinto, F. (1998). Use of ephiphite plants as biomonitors to map atmospheric mercury in a gold trade center city, Amazon, Brazil. Science of the Total Environment 213, 57–64.

    Article  Google Scholar 

  • Mason R., Fitzgerald W., Morel F. (1994). The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58(15), 3191–3198.

    Google Scholar 

  • Nacht, D. M., & Gustin, M. S. (2004). Mercury emissions from background and altered geologic units throughout Nevada. Water, Air and Soil Pollution, 151, 179–193.

    Article  Google Scholar 

  • Nico, L. G., & Taphorn, D. C. (1994). Mercury in fish from gold-mining regions in the upper Cuyuni river system, Venezuela. Fresenius Environmental Bulletin, 3, 287–292.

    Google Scholar 

  • Nriagu, J. (1989). A global assessment of natural sources of atmosphere trace metals. Nature, 338, 47–49.

    Article  Google Scholar 

  • Pirrone, N., Costa, P., Pacyna, J. M., & Ferrara, R. (2001). Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmospheric Environment, 35, 2997–3006.

    Article  Google Scholar 

  • Poissant, L., & Casimir, A. (1998). Water-air and soil-air exchange rate of total gaseous mercury measured at background sites. Arm Environment, 32(5), 883–893.

    Google Scholar 

  • Poissant, L., Pilote, M., & Casimir, A. (1999). Mercury flux measurement in a naturally enriched area: correlation with environmental conditions during the Nevada study and tests of release if mercury from soils (STORMS), Journal of Geophysical Research Arm Environment, 104, 21845–21857.

    Article  Google Scholar 

  • Poissant, L., Pilote, M., Constant, P., Beauvais, C., Zhang, H., & Xu, X. (2004). Mercury gas exchanges over selected bare soil and flooded sites in the bay St. François wetlands (Québec, Canada). Atmospheric Environment, 38, 4205–4214.

    Article  Google Scholar 

  • Pyle, D. M., & Mather, T. A. (2003). The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37, 5115–5124.

    Article  Google Scholar 

  • Rasmussen, P., Edwards, G., Kemp, J., Fitzgerald-Hubble, C., & Schroeder, W. (1998). Towards an improved natural sources inventory for mercury. In: Met Environ: Int Symp: Metallur Soc Can Inst Min Metall Pet (CIM), pp 1–8.

  • Rodríguez, S. (1986). Recursos Minerales de Venezuela. Boletín de Geología, vol 15, no. 25. Ministerio de Energía y Minas, Venezuela.

  • Schlüter, K., Seip, H., & Alstad, J. (1995). Mercury translocation in and evaporation from soil: I Soil lysimeter experiments with 203Hg radiolabelled compounds. Journal of Soil Contamination, 4, 269–298.

    Google Scholar 

  • Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., & Steffen, A. (1998). Arctic springtime depletion of mercury. Nature, 394, 331–332.

    Article  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury: an overview. Atmospheric Environment, 32, 809–822.

    Article  Google Scholar 

  • Seigneur, C., Lohman, K., Vijayaraghavan, K., & Shia, R. (2003). Contributions of global and regional sources to mercury deposition in New York State. Environmental Pollution, 123, 365–373.

    Article  Google Scholar 

  • Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., & Stroganov, V. (2004). Zeeman atomic absortion spectrometer RA-915 +  for direct determination of mercury in air and complex matrix samples. Fuel Processing Technology, 85, 473–485.

    Article  Google Scholar 

  • Shrestra, K., & Ruíz, X. (1989). A preliminary study of mercury contamination in the surface soil and river sediments of the Roscio District, Bolivar State Venezuela. Science of Total Environment, 79, 233–239.

    Article  Google Scholar 

  • Soil Conservation Service, (1972). Soil survey laboratory methods and procedures for collecting soil samples. USDA, Washington, D.C.

  • Southworth, G. R, Lindberg, S. E., Zhang, H., & Anscombe, F. R. (2004). Fugitive mercury emissions from a chlor-alkali factory: sources and fluxes to the atmosphere. Atmospheric Environment, 38, 597–611.

    Article  Google Scholar 

  • Suzuki, T. (1977). Mercury compounds. In: R. Goyer, & M. Mehlman (ed.), Toxicology of Trace Elements. Wiley and Sons, New York, pp 1–41. Wiley and Sons.

    Google Scholar 

  • Wallschläger, D., Turner, R., & London, J. et al. (1999). Factors affecting the measurement of mercury emissions from soils with flux chambers. Journal of Geophysical Research, 104, 21859–21871.

    Article  Google Scholar 

  • Wallschläger, D., Kock, H. H., Schroeder, W., Lindberg, S. E., Ebinghaus, R., & Rolf-Dieter, W. (2002). Estimating gaseous mercury emission from contaminated floodplain soils to the atmosphere with simple field measurement techniques. Water, Air and Soil Pollution, 135, 39–54.

    Article  Google Scholar 

  • Wängberg I., Hans, E., & Ferrara, R. et al. (2003). Atmospheric mercury near a chlor-alkali plant in Sweden. Science of the Total Environment, 304, 29–41.

    Article  Google Scholar 

  • Xiao, Z. F., Munthe, J., Schroeder, W., & Linqvist, O. (1991). Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus, 43B, 267–279.

    Google Scholar 

  • Zhang, H., Lindberg, S. E., Marsik, F. J., & Keeler, G. J. (2001). Mercury air/surface exchange kinetics of background soils of the Tahquamenon river watershed in the Michigan Upper Peninsula. Water, Air and Soil Pollution, 126, 151–169.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the FONACIT (Venezuela), Proyect S1-2000000760, IRNASA-CSIC (Spain) and Faculty of Agronomy, University Central of Venezuela. We also would like to thank Mr. José Alejandría (Company MINVECA) and Dr. Armando John Madero (CVG-TECMIN) for their logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sánchez, A., Contreras, F., Adams, M. et al. Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environ Geochem Health 28, 529–540 (2006). https://doi.org/10.1007/s10653-006-9049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-006-9049-x

Keywords

Navigation