Skip to main content
Log in

A Bayesian framework for stable isotope mixing models

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Stable isotope sourcing is used to estimate proportional contributions of sources to a mixture, such as in the analysis of animal diets and plant nutrient use. Statistical methods for inference on the diet proportions using stable isotopes have focused on the linear mixing model. Existing frequentist methods provide inferences when the diet proportion vector can be uniquely solved for in terms of the isotope ratios. Bayesian methods apply for arbitrary numbers of isotopes and diet sources but existing models are somewhat limited as they assume that trophic fractionation or discrimination is estimated without error or that isotope ratios are uncorrelated. We present a Bayesian model for the estimation of mean diet that accounts for uncertainty in source means and discrimination and allows correlated isotope ratios. This model is easily extended to allow the diet proportion vector to depend on covariates, such as time. Two data sets are used to illustrate the methodology. Code is available for selected analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bedrick EJ, Christensen R, Johnson W (1996) A new perspective on priors for generalized linear models. J Am Stat Assoc 910(436): 1450–1460

    Article  Google Scholar 

  • Ben-David M, Hanley TA, Klein DR, Schell DM (1997) Seasonal changes in diets of coastal and riverine mink: the role of spawning pacific salmon. Can J Zool 75: 803–811

    Article  Google Scholar 

  • Bickford CP, Mcdowell NG, Erhardt EB, Powers HH, Hanson DT (2009) High frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, juniperus monosperma. Plant Cell Environ 320(7): 796–810

    Article  Google Scholar 

  • Bond A, Diamond A (2011) Recent bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21: 1017–1023

    Article  PubMed  Google Scholar 

  • Bowen GJ, Revenaugh J (2003) the isotopic composition of modern meteoric precipitation. Water Resour Res 390(10): 1299

    Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 460(2): 443–453

    Article  Google Scholar 

  • Currin CA, Newell SY, Paerl HW (1995) The role of standing dead spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecol Prog Ser Oldendorf 1210(1): 99–116

    Article  Google Scholar 

  • Deines P, Wooller MJ, Grey J. (2009) Unravelling complexities in benthic food webs using a dual stable isotope (hydrogen and carbon) approach. Freshw Biol 540(11): 2243–2251

    Article  Google Scholar 

  • DeNiro M, Epstein v. (1981) Influence of the diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 48: 341–351

    Article  Google Scholar 

  • Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE (2008) Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci 1050(8): 2788

    Article  Google Scholar 

  • Evans Ogden LJ, Hobson KA, Lank DB (2004) Blood isotopic (δ 13C and δ 15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). The Auk 1210(1): 170–177

    Article  Google Scholar 

  • Evans Ogden LJ, Hobson KA, Lank DB, Bittman S (2005) Stable isotope analysis reveals that agricultural habitat provides an important dietary component for nonbreeding Dunlin. Avian Conserv Ecol 10(3). http://www.ace-eco.org/vol1/iss1/art3/

  • Felicetti LA, Schwartz CC, Rye RO, Haroldson MA, Gunther KA, Phillips DL, Robbins CT (2003) Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to yellowstone grizzly bears. Can J Zool 81: 763–770

    Article  Google Scholar 

  • Finlay JC, Doucett RR, McNeely C (2010) Tracing energy flow in stream food webs using stable isotopes of hydrogen. Freshw Biol 550(5): 941–951

    Article  Google Scholar 

  • Gelman A, Goegebeur Y, Tuerlinckx F, Van Mechelen I (2000) Diagnostic checks for discrete data regression models using posterior predictive simulations. J R Stat Soc Ser C (Appl Stat) 490(2): 247–268

    Article  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 1200(3): 314–326

    Article  Google Scholar 

  • Hobson K, Wassenaar L (1999) Stable isotope ecology: an introduction Oecologia, Springer 120(3):312–313

    Google Scholar 

  • Hobson, KA, Wassenaar, LI (eds) (2008) Tracking animal migration with stable isotopes. Academic Press, London

    Google Scholar 

  • Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 1500(3): 447–461

    Article  Google Scholar 

  • Jones AW, Dalton CM, Stowe ES, Post DM. (2010) Contribution of declining anadromous fishes to the reproductive investment of a common piscivorous seabird, the double-crested cormorant (phalacrocorax auritus). The Auk 1270(3): 696–703

    Article  Google Scholar 

  • Kendall, C, McDonnell, JJ (eds) (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 100(4): 325–337

    Article  Google Scholar 

  • Martínez del Rio C, Wolf BO (February 2005) Mass-balance models for animal isotopic ecology. In: Matthias Starck J, Tobias Wang , Tobias Wang (eds) Physiological and ecological adaptations to feeding in vertebrates, chapter 6. Science Publishers, Enfield, pp 141–174

  • MATLAB (2010) Version 7.10.0 (R2010a) The MathWorks, Natick

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim Cosmochim Acta 48: 1135–1140

    Article  CAS  Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11: 470–480

    Article  PubMed  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Frontiers Ecol Environ 50(8): 429–436

    Google Scholar 

  • Oulhote Y, Bot BL, Deguen S, Glorennec P (2010) Using and interpreting isotope data for source identification. TrAC Trends Anal Chem

  • Parnell A, Jackson A (2008) Siar: stable isotope analysis in R 2008. R package version 3.3.

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 50(3): e9672

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18: 293–320

    Article  Google Scholar 

  • Peterson BJ, Howarth RW (1987) Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of sapelo island, georgia. Limnol oceanogr 32(6): 1195–1213

    Article  CAS  Google Scholar 

  • Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127: 166–170

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 1360(2): 261–269

    Article  Google Scholar 

  • Phillips DL, Koch PL (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130: 114–125

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumption. Ecology 83: 703–718

    Article  Google Scholar 

  • Rundel PW, Ehleringer JR, Nagy KA (1989) Stable isotopes in ecological research. Springer, New York

    Book  Google Scholar 

  • Semmens BX, Ward EJ, Moore JW, Darimont CT (2009) Quantifying inter-and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS One 40(7): e6187

    Article  Google Scholar 

  • Solomon CT, Cole JJ, Doucett RR, Pace ML, Preston ND, Smith LE, Weidel BC (2009) The influence of environmental water on the hydrogen stable isotope ratio in aquatic consumers. Oecologia 1610(2): 313–324

    Article  Google Scholar 

  • Solomon CT, Carpenter SR, Clayton MK, Cole JJ, Coloso JJ, Pace ML, Vander Zanden MJ, Weidel BC (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 920(5): 1115–1125

    Article  Google Scholar 

  • Ward EJ, Semmens BX, Schindler DE (2010) Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ Sci Technol 440(12): 4645–4650 ISSN 0013-936X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Erhardt.

Additional information

Handling Editor: Steve Rathbun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erhardt, E.B., Bedrick, E.J. A Bayesian framework for stable isotope mixing models. Environ Ecol Stat 20, 377–397 (2013). https://doi.org/10.1007/s10651-012-0224-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-012-0224-1

Keywords

Navigation