Skip to main content
Log in

Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

This paper reports the results of an international comparative study on the nature of proof to be taught in geometry. Proofs in French and Japanese lower secondary schools were explored by analyzing curricular documents: mathematics textbooks and national curricula. Analyses on the three aspects of proof—statement, proof, and theory—suggested by the notion of Mathematical Theorem showed differences in these aspects and also differences in the three functions of proof—justification, systematization, and communication—that are seemingly commonly performed in these countries. The results of analyses imply two major elements that form the nature of proof: (a) the nature of the geometrical theory that is chosen to teach and (b) the principal function of proof related to that theory. This paper suggests alternative approaches to teach proof and proving and shows that these approaches are deeply related to the way geometry is taught.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. By “tr.” we indicate the translation in English of the French or Japanese term.

  2. All citations from French or Japanese documents are translated into English by the author.

  3. The authors of textbook add “In addition to them, the properties of equality and the formula of area or volume can be also used as arguments of proof” (Fujii et al., 2012b, p. 112).

  4. CPCTC is not proven, but is considered as a part of the definition of congruent triangles.

References

  • Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? ZDM, 40(3), 341–344.

    Article  Google Scholar 

  • Arsac, G. (1987). L’origine de la démonstration: Essai d’épistémologie didactique. Recherches en didactique des mathématiques, 8(3), 267–312.

    Google Scholar 

  • Artaud, M. (1998). Introduction à l’approche écologique du didactique – L’écologie des organisations mathématiques et didactiques. In M. Bailleul et al. (Eds.), Actes de la IXème école d’été de didactique des mathématiques (pp. 101–139). Caen: ARDM & IUFM.

    Google Scholar 

  • Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: An essay on the case of proof. ZDM, 40(3), 501–512.

    Article  Google Scholar 

  • Beaton, A. E., Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1996). Mathematics achievement in the middle school years: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Boston College.

    Google Scholar 

  • Bosch, M. (2015). Doing research within the anthropological theory of the didactic: The case of School algebra. In S. J. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 51–69). New York: Springer.

  • Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–65.

    Google Scholar 

  • Cabassut, R. (2005). Démonstration, raisonnement et validation dans l’enseignement secondaire des mathématiques en France et en Allemagne. Thèse: Université Paris 7.

  • Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2009). Mathématiques Triangle 6 e. Paris: Hatier.

  • Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2010). Mathématiques Triangle 5 e. Paris: Hatier.

  • Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2011). Mathématiques Triangle 4 e. Paris: Hatier.

  • Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2012). Mathématiques Triangle 3 e. Paris: Hatier.

  • Chevallard, Y. (1991). La transposition didactique (2nd ed.). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (1992). A theoretical approach to curricula. Journal für Mathematikdidaktik, 13(2/3), 215–230.

    Article  Google Scholar 

  • Chevallard, Y. (1994). Les processus de transposition didactique et leur théorisation. In G. Arsac et al. (Eds.), La transposition didactique à l’épreuve (pp. 135–180). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24.

    Google Scholar 

  • Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22(3), 233–261.

    Article  Google Scholar 

  • Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413–435.

    Article  Google Scholar 

  • Fujii, T., et al. (2012a). Atarashii Suugaku 1. [New Mathematics 1] Tokyo: Tokyo Shoseki.

  • Fujii, T., et al. (2012b). Atarashii Suugaku 2. [New Mathematics 2] Tokyo: Tokyo Shoseki.

  • Fujii, T., et al. (2012c). Atarashii Suugaku 3. [New Mathematics 3] Tokyo: Tokyo Shoseki.

  • Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. International Journal of Educational Research, 64, 81–91.

    Article  Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1–2), 5–23.

    Article  Google Scholar 

  • Hanna, G., & de Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study. New York: Springer.

    Google Scholar 

  • Hanna, G., Jahnke, H. N., & Pulte, H. (Eds.). (2010). Explanation and proof in mathematics: Philosophical and educational perspectives. New York: Springer.

    Google Scholar 

  • Herbst, P. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49(3), 283–312.

    Article  Google Scholar 

  • Howson, G. (1995). Mathematics textbooks: A comparative study of Grade 8 texts. TIMSS monograph no. 3. Vancouver: Pacific Educational Press.

    Google Scholar 

  • IGEN. (1998). Le manuel scolaire. Paris: La documentation française. Retrieved from http://www.ladocumentationfrancaise.fr/var/storage/rapports-publics/994000490/0000.pdf

  • Jones, K., & Fujita, T. (2013). Interpretations of National Curricula: The case of geometry in textbooks from England and Japan. ZDM, 45(5), 671–683.

    Article  Google Scholar 

  • Knipping, C. (2003). Processus de preuve dans la pratique de l’enseignement - Analyses comparatives des classes allemandes et françaises en 4ème. Bulletin de l’APMEP, 449, 784–794.

    Google Scholar 

  • Mariotti, M. A., Bartolini, M, Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp.180-195). Lathi: PME.

  • MEN. (2008). Programmes du collège: Programmes de l’enseignement de mathématiques. Bulletin Officiel Spécial, 6, 28 août.

  • MEXT. (2008). Chuugakko gakushuu shidou youryou kaisetsu suugaku-hen [Junior high school teaching guide for Japanese course of study: mathematics]. Tokyo: Kyouiku Shuppan.

  • Miyakawa, T. (2012). Ecology of proof in French lower secondary school geometry: A textbook analysis. Journal of Japan Society of Mathematics Education, 94(9), 2–11. (In Japanese).

    Google Scholar 

  • Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: A way to understand teaching and learning cultures. ZDM, 33(5), 158–175.

    Google Scholar 

  • Peterson, B. E. (2008). A look at Japanese junior high school mathematics textbooks. In Z. Usiskin & E. Willmore (Eds.), Mathematics curriculum in Pacific Rim countries—China, Japan, Korea, and Singapore (pp. 209–231). Charlotte, NC: Information Age.

    Google Scholar 

  • Reid, D. A., & Knipping, C. (2010). Proof in mathematics education. Rotterdam: Sense Publishers.

    Google Scholar 

  • Sésamath (2010). Le Manuel Sésamath 5 e. Génération 5. Retrieved June 17 2015 from http://manuel.sesamath.net/

  • Sésamath (2011). Le Manuel Sésamath 4 e. Génération 5. Retrieved June 17 2015 from http://manuel.sesamath.net/

  • Yoshikawa, S. (2008). Education ministry perspective on mathematics curriculum in Japan. In Z. Usiskin & E. Willmore (Eds.), Mathematics curriculum in Pacific Rim countries—China, Japan, Korea, and Singapore (pp. 9–22). Charlotte, NC: Information Age.

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Nicolas Balacheff for valuable comments on an earlier version of this paper. This work is partially supported by JSPS KAKENHI (23730826 and 22330245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miyakawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyakawa, T. Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools. Educ Stud Math 94, 37–54 (2017). https://doi.org/10.1007/s10649-016-9711-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-016-9711-x

Keywords

Navigation