Skip to main content
Log in

Ecotoxicity of pesticide formulations and their mixtures: the case of potato crops in Costa Rica

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Despite their environmental implications, ecotoxicological information regarding pesticide mixtures is relatively scarce. This study aimed to determine the ecotoxicity of individual pesticide formulations and their mixtures (insecticides and fungicides), which are applied during the production cycle of potato, according to agricultural practices from a Latin American region in Costa Rica. Two benchmark organisms were employed: Daphnia magna and Lactuca sativa. First, the evaluation of individual formulations (chlorothalonil, propineb, deltamethrin+imidacloprid, ziram, thiocyclam and chlorpyrifos) revealed differences between available EC50 for active ingredients (a.i.) and their respective formulations toward D. magna; on the contrary, no information could be retrieved from scientific literature for comparison in the case of L. sativa. In general, acute toxicity was higher toward D. magna than L. sativa. Moreover, interactions could not be determined on L. sativa, as the chlorothalonil formulation was not toxic at high levels and the concentration-response to propineb could not be fitted to obtain an IC50 value. The commercial formulation composed of deltamethrin+imidacloprid followed the concentration addition model (when compared with parameters retrieved from individual a.i.) and the other three mixtures evaluated (I: chlorothalonil-propineb-deltamethrin+imidacloprid; II: chlorothalonil-propineb-ziram-thiocyclam; III: chlorothalonil-propineb-chlorpyrifos) produced an antagonistic effect on D. magna, thus suggesting less acute toxicity than their individual components. Subsequent chronic studies showed that one of the most toxic mixtures (II) negatively affected D. magna reproduction at sublethal concentrations indicating that this mixture poses a risk to this species if these pesticides co-exist in freshwater systems. These findings provide useful data to better estimate the impact of real agricultural practices related to the use of agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar P (2014) Utilización del programa PIRI (Pesticide Impact Rating Index) como indicador de peligrosidad de la movilidad y toxicidad de los plaguicidas utilizados en dos fincas agrícolas cercanas a la quebrada Sanatorio, Cartago (Tesis de Licenciatura). Universidad de Costa Rica, San Pedro

    Google Scholar 

  • Arias-Andrés MJ, Rämö R, Mena FT, Ugalde R, Grandas L, Ruepert C, Castillo LE, Van den Brink PJ, Gunnarsson JS (2018) Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica. Environ Sci Poll Res 25:13312–13321

    Article  Google Scholar 

  • Belden JB, Gilliom RJ, Lydy MJ (2007) How well can wepredict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3:364–372

    Article  CAS  Google Scholar 

  • Bostanian NJ, Larocque N, Chouinard G, Coderre D (2001) Baseline toxicity of several pesticides to Hyaliodes vitripennis (Say) (Hemiptera: Miridae). Pest Manage Sci 57:1007–1010

    Article  CAS  Google Scholar 

  • Bravo V, de la Cruz E, Herrera G, Ramírez F (2013) Uso de plaguicidas en cultivos agrícolas como herramienta para el monitoreo de peligros en salud. Uniciencia 27:351–376

    Google Scholar 

  • Bravo V, de la Cruz E, Berrocal S, Ramírez F (2015) Importación de plaguicidas: peligros agudos en salud y efectos cancerígenos. Observatorio Ambiental, UNA http://www.observatorioambiental.una.ac.cr/index.php/indicadores-ambientales/84-plaguicidasysalud. Accessed November 11, 2021

  • Carazo-Rojas E, Pérez-Rojas G, Pérez-Villanueva M, Chinchilla-Soto C, Chin-Pampillo JS, Aguilar-Mora P, Alpízar-Marín M, Masís-Mora M, Rodríguez-Rodríguez CE, Vryzas Z (2018) Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ Poll 241:800–809

    Article  CAS  Google Scholar 

  • Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLOS ONE 9:e96580

    Article  Google Scholar 

  • Chin-Pampillo JS, Ruiz KH, Aguilar PM, Arias VM, Masis MM (2012) Caracterización de la calidad del agua de la Quebrada Sanatorio en Tierra Blanca ubicada en una zona agrícola de la provincia de Cartago y sus implicaciones para la salud pública. O Mundo da Saúde 36:548–555

    Article  Google Scholar 

  • Chiu MC, Hunt L, Resh VH (2016) Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: a case study from the Sacramento River watershed, California. Environ Poll 219:89–98

    Article  CAS  Google Scholar 

  • Commo F, Bot BM (2016) nplr: N-Parameter Logistic Regression. R package version 0.1–7. https://CRAN.R-project.org/package=nplr

  • Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delegue MH (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotox Environ Safe 57:410–419

    Article  CAS  Google Scholar 

  • de Jong FMW, de Snoo GR, van de Zande JC (2008) Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherlands. J Environ Manage 86:721–730

    Article  Google Scholar 

  • Dewar AM, Westwood F, Bean KM, Haylock LA, Osborne R (1997) The relationship between pellet size and the quantity of imidacloprid applied to sugar beet pellets and the consequences for seedling emergence. Crop Prot 16:187–192

    Article  Google Scholar 

  • Diepens NJ, Pfennig S, Van den Brink PJ, Gunnarsson JS, Ruepert C, Castillo LE (2014) Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica. J Environ Biol 35:73–84

    Google Scholar 

  • Ebel RC, Wallace B, Elkins CH (2000) Phytotoxicity of the systemic insecticide imidacloprid on tomato and cucumber in the greenhouse. Hort Technology 10:144–147

    Article  CAS  Google Scholar 

  • Echeverría-Sáenz S, Mena F, Pinnock M, Ruepert C, Solano K, de la Cruz E, Campos B, Sánchez-Avila J, Lacorte S, Barata C (2012) Environmental hazards of pesticides from pineapple crop production in the Río Jiménez watershed (Caribbean Coast, Costa Rica). Sci Total Environ 440:106–114

    Article  Google Scholar 

  • Echeverría-Sáenz S, Mena F, Arias-Andrés M, Vargas S, Ruepert C, Van den Brink PJ, Castillo LE, Gunnarsson JS (2018) In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica. Environ Sci Poll Res 25:13270–13282

    Article  Google Scholar 

  • Escobar-Chávez C, Alvariño L, Iannacone J (2019) Evaluación del riesgo ambiental acuático de la mezcla de los plaguicidas imidacloprid (insecticida) y propineb (fungicida) en Daphnia magna Straus, 1820. PAIDEIA XXI 9:301–332

    Google Scholar 

  • Escher B, Braun G, Zarfl C (2020) Exploring the Concepts of Concentration Addition and Independent Action Using a Linear Low‐Effect Mixture Model. Environ Toxicol Chem 39:2552–2559

    Article  CAS  Google Scholar 

  • EPA (2002) EPA-821-R-02-012 Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organisms. Office of Water (4303T), Washington, DC

    Google Scholar 

  • EPA (2002) Ziram: A Preliminary HED Risk Assessment for the Reregistration Eligibility Decision (RED) Document. U. S. Environmental Protection Agency, Washington, DC

  • Faust M, Altenburger R, Grimme LH (2000) Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual 29:1063

    Article  CAS  Google Scholar 

  • Fernández-Casalderrey A, Ferrando MD, Andreu-Moliner E (1993) Effects of endosulfan on survival, growth and reproduction of Daphnia magna. Comp Biochem Physiol Part - C: Pharmacol Toxicol Endocrinol 106:437–441

    Google Scholar 

  • Fernández‐Casalderrey A, Ferrando MD, Andreu‐Moliner E (1995) Chronic toxicity of diazinon to Daphnia magna: Effects on survival, reproduction and growth. Toxicol Environ Chem 49:25–32

    Article  Google Scholar 

  • Ferrando MD, Sancho E, Andreu-Moliner E (1996) Chronic toxicity of fenitrothion to an algae (Nannochloris oculata), a rotifer (Brachionus calyciflorus), and the cladoceran (Daphnia magna). Ecotox Environ Safe 35:112–120

    Article  CAS  Google Scholar 

  • Fournier M, Ramírez F, Ruepert C, Vargas S, Echeverría S (2010) Diagnóstico sobre contaminación de aguas, suelos y productos hortícolas por el uso de agroquímicos en la microcuenca de las quebradas Plantón y Pacayas en Cartago, Costa Rica. INTA-UNA, Costa Rica, pp 1–85

  • Fungicide Resistance Action Committee (FRAC) (2021) FRAC code list: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groupson product labels). FRAC https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022--final.pdf?sfvrsn=b6024e9a_2. Accessed 31 January 2022

  • Gharaei A, Karimi M, Mirdar HJ, Miri M, Faggio C (2020) Population growth of Brachionus calyciflorus affected by deltamethrin and imidacloprid insecticides. Iran J Fish Sci 19:588–601

    Google Scholar 

  • Huete-Soto A, Castillo-González H, Masís-Mora M, Chin-Pampillo JS, Rodríguez-Rodríguez CE (2017) Effects of oxytetracycline on the performance and activity of biomixtures: removal of herbicides and mineralization of chlorpyrifos. J Hazard Mater 321:1–8

    Article  CAS  Google Scholar 

  • Iannacone J, Alvariño L, Caballero C, Sánchez J (2000) Cuatro ensayos ecotoxicológicos para evaluar lindano y clorpirifos. Gayana 64:139–146

    Google Scholar 

  • Joly P, Bonnemoy F, Charvy JCH, Bohatier J, Mallet C (2013) Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere 93:2444–2450

    Article  CAS  Google Scholar 

  • Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22:1050–1064

    Article  CAS  Google Scholar 

  • Li X, Zhao X, Yao Y, Guob M, Li S (2021) New insights into crosstalk between apoptosis and necroptosis co-induced by chlorothalonil and imidacloprid in Ctenopharyngodon idellus kidney cell. Sci Total Environ 780:146591

    Article  CAS  Google Scholar 

  • Loewy RM, Monza LB, Kirs VE, Savini MC (2011) Pesticide distribution in an agricultural environment in Argentina. J Environ Sci Health B 46:662–670

    CAS  Google Scholar 

  • Marinovich M, Viviani B, Capra V, Corsini E, Anselmi L, D’Agostino G, Di Nucci A, Binaglia M, Tonini M, Galli CL (2002) Facilitation of acetylcholine signaling by the dithiocarbamate fungicide propineb. Chem Res Toxicol 15:26–32

    Article  CAS  Google Scholar 

  • Nagya K, Duca RC, Lovas S, Creta M, Scheepers PTJ, Godderis L, Ádám B (2020) Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. Environ Res 181:108926

    Article  Google Scholar 

  • OECD (2012) Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing. https://doi.org/10.1787/9789264185203-en

  • Pereira JL, Antunes SC, Castro BB, Marques CR, Goncalves AMM, Goncalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18:455–463

    Article  CAS  Google Scholar 

  • Pérez-Villanueva M, Chin-Pampillo J, Aguilar-Mora P, Guzmán AP, Masís-Mora M, Arias-Mora V, Ramírez-Morales D (2021) An integrative water quality evaluation in two surface water bodies from a tropical agricultural region in Cartago, Costa Rica. Environ Sci Poll Res https://doi.org/10.1007/s11356-021-17283-y

  • Phyu YL, Palmer CG, Warne MSJ, Hose GC, Chapman JC, Lim RP (2011) A comparison of mixture toxicity assessment: Examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia. Chemosphere 85:1568–1573

    Article  CAS  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ramírez-Morales D, Perez-Villanueva ME, Chin-Pampillo JS, Aguilar-Mora P, Arias-Mora V, Masís-Mora M (2021) Pesticide occurrence and water quality assessment from an agriculturally influenced Latin-American tropical region. Chemosphere 262:127851

    Article  Google Scholar 

  • Ramírez-Muñoz F, Fournier-Leiva M, Ruepert C, Hidalgo-Ardón C (2014) Uso de agroquímicos en el cultivo de papa en Pacayas, Cartago Costa Rica. Agronomía Mesoamericana 25:337–345

    Article  Google Scholar 

  • Rämö RA, van den Brink PJ, Ruepert C, Castillo LE, Gunnarsson JS (2018) Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models. Environ Sci Pollu Res 25:13254–13269

    Article  Google Scholar 

  • Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-Response Analysis Using R. PLoS ONE 10:146021. https://doi.org/10.1371/journal.pone.0146021

    Article  CAS  Google Scholar 

  • Rizo-Patrón FV, Kumar A, McCoy MBC, Springer M, Trama FA (2013) Macroinvertebrate communities as bioindicators of water quality in conventional and organic irrigated rice fields in Guanacaste, Costa Rica. Ecol Indic 29:68–78

    Article  Google Scholar 

  • Rizzati V, Briand O, Guillou H, Gamet-Payrastre L (2016) Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem Biol Interact 254:231–246

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez CE, Matarrita J, Herrero-Nogareda L, Pérez-Rojas G, Alpízar-Marín M, Chinchilla-Soto C, Pérez-Villanueva M, Vega-Méndez D, Masís-Mora M, Cedergreen N, Carazo-Rojas E (2021) Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides. Environ Poll 284:117498. https://doi.org/10.1016/j.envpol.2021.117498

    Article  CAS  Google Scholar 

  • Ruíz-Hidalgo K, Masís-Mora M, Barbieri E, Carazo-Rojas E, Rodríguez-Rodríguez CE (2016) Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere 144:864–871

    Article  Google Scholar 

  • Sancho E, Sánchez M, Ferrando MD, Andreu-Moliner E (2001) Effects of thiobencarb herbicide to an alga (Nannochloris oculata) and the cladoceran (Daphnia magna). J Environ Sci Health B 36:55–65

    Article  CAS  Google Scholar 

  • Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689

    Article  CAS  Google Scholar 

  • SEPSA (2016) Boletín Estadístico Agropecuario N° 26. Área de Estadísticas Económicas e Información, San José, Costa Rica

    Google Scholar 

  • Servicio Fitosanitario del Estado (SFE) (2020) Uso aparente de plaguicidas en Costa Rica, período 2017–2019. MAG, Costa Rica, https://www.sfe.go.cr/Transparencia/Estimacion_de_uso_de_plaguicidas_en_Costa_Rica_2017_2019.pdf#search=uso%20aparente accessed 15 January 2021

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Singh GP, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1:1446

    Article  CAS  Google Scholar 

  • Sobrero MC, Ronco A (2004) Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L). In: Castillo MG (ed.) Ensayos toxicológicos y métodos de evaluación de calidad de aguas. IMTA, México, p 179

    Google Scholar 

  • Song Y, Chen M, Zhou J (2017) Effects of three pesticides on superoxide dismutase and glutathione-S-transferase activities and reproduction of Daphnia magna. Arch Environ Prot 43:80–86

    Article  Google Scholar 

  • Tomé HVV, Ramos GS, Araújo MF, Santana WC, Santos GR, Guedes RNC, Maciel CD, Newland PL, Oliveira EE (2017) Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. R Soc Open Sci 4:160866

    Article  Google Scholar 

  • USEPA (1996) Ecological Effects Test Guidelines OPPTS 850.4200 Seed Germination/Root Elongation Toxicity Test. U.S. Environmnetal Protection Agency Washington D.C.

  • van Scoy AR, Tjeerdema RS (2014) Environmental fate and toxicology of chlorothalonil. Rev Environ Contam Toxicol 232:89–105

    Google Scholar 

  • Villarroel MJ, Sancho E, Ferrando MD, Andreu E (2003) Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere 53:857–864

    Article  CAS  Google Scholar 

  • Walter NT, Adeleye VO, Muthomi PK, Ortiz RJR, Strzyzewski I, Funderburk J, Martini X (2018) Toxicity of different insecticides against two thrips (Thysanoptera: Thripidae) pests of concern in Central America. Florida Entomologist 101(4):627–633

    Article  CAS  Google Scholar 

  • Walter NT, Ortiz RJR, Strzyzewski I, Funderburk J, Martini X (2020) Toxicity of different insecticides against Franklinellia invasor (Thysanoptera: Thripidae), a mango pest in Central America. Fla Entomol 103:296–298

    Article  Google Scholar 

  • Xiaoqiang C, Hua F, Xuedong P, Xiao W, Min S, Bo F, Yunlong Y (2008) Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. J Environ Sci 20:464–469

    Article  Google Scholar 

  • Xu L, Luo G, Sun Y, Huang S, Xu D, Xu G, Han Z, Gu Z, Zhang Y (2020) Multiple down-regulated cytochrome P450 monooxygenase genes contributed to synergistic interaction between chlorpyrifos and imidacloprid against Nilaparvata lugens. J Asia Pac Entomol 23:44–50

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Marta Pérez Villanueva for the technical support at initial stages of the implementation of the chronic toxicity assay; Paula Aguilar Mora for the description of the pesticide application cycle for potato crops in Costa Rica; and Marianella Castro Esquivel and José David Umaña Monge for the collaboration in the performance and data analysis of the chronic test.

Funding

This work was supported by Vicerrectoría de Investigación at Universidad de Costa Rica (project 908-B8-122).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MM-R, DR-M and JRM-M. The first draft of the paper was written by MM-M and CE. R-R and all authors commented on previous versions of the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Carlos E. Rodríguez-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Rivera, M., Ramírez-Morales, D., Montiel-Mora, J.R. et al. Ecotoxicity of pesticide formulations and their mixtures: the case of potato crops in Costa Rica. Ecotoxicology 32, 383–393 (2023). https://doi.org/10.1007/s10646-023-02648-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02648-5

Keywords

Navigation