Skip to main content
Log in

Assessment of ecotoxicity effects of aspirin on non-target organism (Daphnia magna) via analysis of the responses of oxidative stress, DNA methylation-related genes expressions and life traits changes

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Aspirin (acetylsalicylic acid, ASA), a widely used non-steroidal anti-inflammatory drug, was frequently detected in aquatic environments around the world. However, information on the potential toxic effects of aspirin on non-target aquatic invertebrates is limited. In the present study, we investigated the effects of ASA on the transcriptional expressions of antioxidant genes (Nrf2, Keap1, HO-1, GCLC, GPx, TRX, TrxR and Prx1) and DNA methylation genes (DNMT1, DNMT3 and TET2) in Daphnia magna (D. magna)for 24, 48 and 96 h and the changes of antioxidant enzymatic activity and GSH, MDA content for 48 h. The effects of ASA on the life traits of D. magna were also addressed via a 21-days chronic toxicity test. Results showed that the expressions of Nrf2 and its target genes (HO-1, GPx and TrxR, GCLC, TRX and Prx1) were induced to different degrees at 48 h and/or 96 h. The activity of antioxidant enzymes (SOD, CAT, GST and GPx) and MDA content increased but GSH content decreased, indicating that ASA caused oxidative stress in D. magna. ASA also changed the expression of DNA methylation genes, such as DNMT and TET2, in D. magna. We speculated that ASA may affect the antioxidant system responses through regulation of Nrf2/Keap1 signaling pathway, and/or through indirectly influencing DNA methylation levels by DNMT and TET gene expression, but the detailed mechanism needs further investigations. Chronic exposure to ASA for 21 days caused inhibitions on the growth, reproduction and behavior of D. magna (e.g., delaying days to the first brood and shortening the body length). In summary, ASA significantly affected the antioxidant responses of D. magna, and negatively disturbed its life traits in growth, development and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agunbiade FO, Moodley B (2016) Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem 35:36–46.

    Article  CAS  Google Scholar 

  • Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109.

  • Athanasio CG, Sommer U, Viant MR, Chipman JK, Mirbahai L (2018) Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. Ecotoxicology 27:556–568.

    Article  CAS  Google Scholar 

  • Bang SH, Ahn J-Y, Hong N-H, Sekhon SS, Kim Y-H, Min J (2015) Acute and chronic toxicity assessment and the gene expression of Dhb, Vtg, Arnt, CYP4, and CYP314 in Daphnia magna exposed to pharmaceuticals. Mol Cell Toxicol 11:153–160.

    Article  CAS  Google Scholar 

  • Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol Part C Toxicol Pharmacol 140:175–186.

    Article  Google Scholar 

  • Belaid C, Sbartai I (2021) Assessing the effects of Thiram to oxidative stress responses in a freshwater bioindicator cladoceran (Daphnia magna). Chemosphere 268:128808.

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Dashwood RH (2020) Epigenetic regulation of Nrf2/Keap1 by phytochemicals. Antioxidants 9:865.

    Article  CAS  Google Scholar 

  • Cebrián-Prats A, González-Lafont À, Lluch JM (2019) Understanding the molecular details of the mechanism that governs the oxidation of arachidonic acid catalyzed by aspirin-acetylated cyclooxygenase-2. ACS Catal 10:138–153.

    Article  Google Scholar 

  • Ding R, Liu S, He C, Nie X (2020) Paracetamol affects the expression of detoxification- and reproduction-related genes and alters the life traits of Daphnia magna. Ecotoxicology 29:398–406.

    Article  CAS  Google Scholar 

  • Doi H, Horie T (2010) Salicylic acid-induced hepatotoxicity triggered by oxidative stress. Chem Biol Interact 183:363–368.

    Article  CAS  Google Scholar 

  • Doi H, Iwasaki H, Masubuchi Y, Nishigaki R, Horie T(2002) Chemiluminescence associated with the oxidative metabolism of salicylic acid in rat liver microsomes Chem Biol Interact 140:109–119.

    Article  CAS  Google Scholar 

  • Dragomir E, Manduteanu I, Voinea M, Costache G, Manea A, Simionescu M (2004) Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells. J. Diabetes Complications 18:289–299.

    Article  Google Scholar 

  • Freitas R, Silvestro S, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C (2019) Biochemical and physiological responses induced in Mytilus galloprovincialis after a chronic exposure to salicylic acid. Aquat Toxicol 214:105258.

    Article  CAS  Google Scholar 

  • Gomez-Olivan LM, Galar-Martinez M, Islas-Flores H, Garcia-Medina S, SanJuan-Reyes N (2014) DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna. Comp Biochem Physiol Part C 164:21–26.

    CAS  Google Scholar 

  • Harris KDM, Bartlett NJ, Lloyd VK (2012) Daphnia as an emerging epigenetic model organism. Genet Res Int 2012:147892.

    Google Scholar 

  • Hayashi Y, Heckmann L-H, Callaghan A, Sibly RM (2008) Reproduction recovery of the crustacean Daphnia magna after chronic exposure to ibuprofen. Ecotoxicology 17:246–251.

    Article  CAS  Google Scholar 

  • Heckmann LH, Connon R, Hutchinson TH, Maund SJ, Sibly RM, Callaghan A (2006) Expression of target and reference genes in Daphnia magna exposed to ibuprofen. BMC Genomics 7:175.

    Article  Google Scholar 

  • Houde M, Carter B, Douville M (2013) Sublethal effects of the flame retardant intermediate hexachlorocyclopentadiene (HCCPD) on the gene transcription and protein activity of Daphnia magna. Aquat Toxicol 140:213–219.

    Article  Google Scholar 

  • Jemec A, Tišler T, Erjavec B, Pintar A (2012) Antioxidant responses and whole-organism changes in Daphnia magna acutely and chronically exposed to endocrine disruptor bisphenol A. Ecotoxicol Environ Saf 86:213–218.

    Article  CAS  Google Scholar 

  • Jian Z, Tang L, Yi X, Liu B, Zhang Q, Zhu G, Wang G, Gao T, Li C (2016) Aspirin induces Nrf2-mediated transcriptional activation of haem oxygenase‐1 in protection of human melanocytes from H2O2-induced oxidative stress. J Cell Mol Med 20:1307–1318.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518.

    Article  CAS  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116.

    Article  CAS  Google Scholar 

  • Kim H, Kim J-S, Kim P-J, Won E-J, Lee Y-M (2018a) Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna: Differential metal and age-Specific patterns. Comp Biochem Physiol Part C Toxicol Pharmacol 209:28–36.

    Article  Google Scholar 

  • Kim R-O, Jo M-A, Song J, Kim I-C, Yoon S, Kim W-K (2018b) Novel approach for evaluating pharmaceuticals toxicity using Daphnia model: analysis of the mode of cytochrome P450-generated metabolite action after acetaminophen exposure. Aquat Toxicol 196:35–42.

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385.

    Article  CAS  Google Scholar 

  • Kusari, F, O’Doherty, AM, Hodges, NJ, Wojewodzic, MW, 2017 Bi-directional effects of vitamin B12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 7. https://doi.org/10.1038/s41598-017-12148-2.

  • Lau ATY, Yu S, Khor TO, Cheung K-L, Li W, Wu T-Y, Huang Y, Foster BA, Kan YW, Kong A-N (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5:e8579.

    Article  Google Scholar 

  • Lindeman LC, Thaulow J, Song Y, Kamstra JH, Xie L, Asselman J, Alestrom P, Tollefsen KE (2019) Epigenetic, transcriptional and phenotypic responses in two generations of Daphnia magna exposed to the DNA methylation inhibitor 5-azacytidine. Environ Epigenetics 5:dvz016.

    Article  Google Scholar 

  • Liu J, Shen J, Lu G, Xu X, Yang H, Yan Z, Chen W (2020) Multilevel ecotoxicity assessment of environmentally relevant bisphenol F concentrations in Daphnia magna. Chemosphere 240:124917.1–124917.10.

    Article  Google Scholar 

  • Liu S, Ding R, Nie X (2019) Assessment of oxidative stress of paracetamol to Daphnia magna via determination of Nrf1 and genes related to antioxidant system. Aquat Toxicol 211:73–80.

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Pan B, Wang C, Bao S, Nie X (2017) Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. Aquat Toxicol 183:104–113.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408.

    Article  CAS  Google Scholar 

  • Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247.

    Article  CAS  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    Article  CAS  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30:42–59.

    Article  CAS  Google Scholar 

  • Mann G, Rowlands D, Li F, Dewinter P, Siow R (2007) Activation of endothelial nitric oxide synthase by dietary isoflavones: Role of NO in Nrf2-mediated antioxidant gene expression. Cardiovasc Res 75:261–274.

    Article  CAS  Google Scholar 

  • Marques CR, Abrantes N, Goncalves F (2004) Life-history traits of standard and autochthonous cladocerans: I. Acute and chronic effects of acetylsalicylic acid. Environ Toxicol 19:518–526.

    Article  CAS  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557.

    Article  CAS  Google Scholar 

  • Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312.

    Article  CAS  Google Scholar 

  • Piedade F, Bio S, Nunes B (2020) Effects of common pharmaceutical drugs (paracetamol and acetylsalicylic acid) short term exposure on biomarkers of the mussel Mytilus spp. Environ Toxicol Pharmacol 73:103276.

    Article  CAS  Google Scholar 

  • Ralph S, Pritchard R, Rodríguez-Enríquez S, Moreno-Sánchez R, Ralph R (2015) Hitting the bull’s-eye in metastatic cancers—NSAIDs elevate ros in mitochondria, inducing malignant cell death. Pharmaceuticals 8:62–106.

    Article  CAS  Google Scholar 

  • Singh S, Li SS-L (2012) Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13:10143–10153.

    Article  CAS  Google Scholar 

  • Suzuki M, Otsuki A, Keleku-Lukwete N, Yamamoto M (2016) Overview of redox regulation by Keap1–Nrf2 system in toxicology and cancer. Curr Opin Toxicol 1:29–36.

    Article  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203.

    Article  CAS  Google Scholar 

  • Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B (2021) Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci Total Environ 763:143038.

    Article  CAS  Google Scholar 

  • Valéria Giménez, Bruno Nunes (2019) Effects of commonly used therapeutic drugs, paracetamol, and acetylsalicylic acid, on key physiological traits of the sea snail Gibbula umbilicalis. Environ Sci Pollut Res 26:21858–21870.

    Article  Google Scholar 

  • Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR (2009) Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int 35:700–706.

    Article  CAS  Google Scholar 

  • Wilkinson JL, Hooda PS, Barker J, Barton S, Swinden J (2015) Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: A review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci Technol 46:336–381.

    Article  Google Scholar 

  • Yang H, Magilnick N, Lee C, Kalmaz D, Ou X, Chan JY, Lu SC (2005) Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-κB and AP-1. Mol Cell Biol 25:5933–5946.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (NSFC NO: 31770554) and Project supported by Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nie Xiangping.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuiping, H., Na, Z., Limei, H. et al. Assessment of ecotoxicity effects of aspirin on non-target organism (Daphnia magna) via analysis of the responses of oxidative stress, DNA methylation-related genes expressions and life traits changes. Ecotoxicology 32, 137–149 (2023). https://doi.org/10.1007/s10646-023-02624-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02624-z

Keywords

Navigation