Skip to main content
Log in

Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Plants represent uncommon targets to evaluate pharmaceuticals toxicity. In this work, Lemna minor was employed as a plant model to determine the toxicity of selected pharmaceuticals, and to assay if such toxicity could be predicted by QSAR models based on green algae. Among eight compounds, measurable toxicity was determined for ketoprofen (EC50 = 11.8 ± 1.9 mg/L), fluoxetine (EC50 = 27.0 ± 8.7 mg/L) and clindamycin 2-phosphate (EC50 = 57.7 ± 1.7 mg/L). Even though a correlation of r2 = 0.87 was observed between experimental toxicity towards algae and L. minor, QSAR estimations based on algae data poorly predicted the toxicity of pharmaceuticals on the plant. More experimental data for L. minor are necessary to determine the applicability of these predictions; nonetheless, these results remark the importance of measuring experimental ecotoxicological parameters for individual taxa. The toxicity of pharmaceutical binary mixtures (ketoprofen, fluoxetine and clindamycin) revealed in some cases deviations from the concentration addition model; nonetheless these deviations were small, thus the interactions are unlikely to be of severe biological significance. Moreover, the EC50 concentrations determined for these pharmaceuticals are significantly higher than those detected in the environment, suggesting that acute effects on L. minor would not take place at ecosystem level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkimin GD, Soares AM, Barata C, Nunes B (2020) Evaluation of ketoprofen toxicity in two freshwater species: Effects on biochemical, physiological and population endpoints. Environ Poll 265:114993

    Article  CAS  Google Scholar 

  • Barbosa MO, Ribeiro AR, Ratola N, Hain E, Homem V, Pereira MFR, Blaney L, Silva AM (2018) Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence excitation-emission matrices. Sci Total Environ 644:1128–1140

    Article  CAS  Google Scholar 

  • Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301

    Article  CAS  Google Scholar 

  • Biel-Maeso M, Baena-Nogueras RM, Corada-Fernández C, Lara-Martín PA (2018) Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci Total Environ 612:649–659

    Article  CAS  Google Scholar 

  • Boxall AB, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agr Food Chem 54:2288–2297

    Article  CAS  Google Scholar 

  • Brain RA, Hanson ML, Solomon KR, Brooks BW (2008) Aquatic plants exposed to pharmaceuticals: effects and risks. Rev Environ Contam Toxicol 192:67–115

    Article  CAS  Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Sanderson H, Sibley PK, Solomon KR(2004) Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test Environ Toxicol Chem 23:371. https://doi.org/10.1897/02-576

    Article  CAS  Google Scholar 

  • Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Poll Res 21:11729–11763

    Article  Google Scholar 

  • Cedergreen N, Andersen L, Olesen CF, Spliid HH, Streibig JC(2005) Does the effect of herbicide pulse exposure on aquatic plants depend on Kow or mode of action? Aquat Toxicol 71:261–271. https://doi.org/10.1016/j.aquatox.2004.11.010

    Article  CAS  Google Scholar 

  • Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK, Streibig JC, Sørensen H (2008) A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ Toxicol Chem 27:1621–1632

    Article  CAS  Google Scholar 

  • Cedergreen N, Kudsk P, Mathiassen SK, Sørensen H, Streibig JC (2007) Reproducibility of binary‐mixture toxicity studies. Environ Toxicol Chem 26:149–156

    Article  CAS  Google Scholar 

  • Cedergreen N (2014) Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0096580

  • Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non‐target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manage Sci 61:1152–1160

    Article  CAS  Google Scholar 

  • Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25:2208–2215. https://doi.org/10.1897/05-415R.1

    Article  CAS  Google Scholar 

  • Contrera JF (2013) Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals. Regul Toxicol Pharm 67:285–293. https://doi.org/10.1016/j.yrtph.2013.08.008

    Article  CAS  Google Scholar 

  • D’Abrosca B, Fiorentino A, Izzo A, Cefarelli G, Pascarella MT, Uzzo P, Monaco P (2008) Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants. J Environ Sci Heal A 43:285–294

    Article  CAS  Google Scholar 

  • Deo RP (2014) Pharmaceuticals in the surface water of the USA: a review. Curr Environ Health Rep 1:113–122

    Article  CAS  Google Scholar 

  • Dordio A, Ferro R, Teixeira D, Palace AJ, Pinto AP, Dias CM (2011) Study on the use of Typha spp. for the phytotreatment of water contaminated with ibuprofen. Int J Environ Anal Chem 91:654–667

    Article  CAS  Google Scholar 

  • Dordio AV, Duarte C, Barreiros M, Carvalho AP, Pinto AP, da Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.–potential use for phytoremediation? Bioresour Technol 100:1156–1161

    Article  CAS  Google Scholar 

  • Drzymała J, Kalka J (2020) Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere 259:127407. https://doi.org/10.1016/j.chemosphere.2020.127407

    Article  CAS  Google Scholar 

  • El-Bassat RA, Touliabah HE, Harisa GI, Sayegh FA (2011) Aquatic toxicity of various pharmaceuticals on some isolated plankton species. Int J Med Med Sci 3:170–180

    CAS  Google Scholar 

  • Escher BI, Berger C, Bramaz N, Kwon JH, Richter M, Tsinman O, Avdeef A (2008) Membrane–water partitioning, membrane permeability, and baseline toxicity of the parasiticides ivermectin, albendazole, and morantel. Environ Toxicol Chem 27:909–918

    Article  CAS  Google Scholar 

  • Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch Environ Contam Toxicol 32:353–357

    Article  CAS  Google Scholar 

  • Fairchild JF, Ruessler DS, Carlson AR (1998) Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ Toxicol Chem 17:1830–1834

    Article  CAS  Google Scholar 

  • Ghirardini A, Grillini V, Verlicchi P (2020) A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure–environmental risk due to antibiotics after application to soil. Sci Total Environ 707:136118

    Article  CAS  Google Scholar 

  • Ghosh S, Kar S, Leszczynski J (2020) Ecotoxicity Databases for QSAR Modeling. pp. 709–758. https://doi.org/10.1007/978-1-0716-0150-1_29

  • Godoy AA, Kummrow F (2017) What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Crit Rev Environ Sci Technol 47:1453–1496

    Article  Google Scholar 

  • González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res 47:2050–2064. https://doi.org/10.1016/j.watres.2013.01.020

    Article  CAS  Google Scholar 

  • Gros M, Rodríguez-Mozaz S, Barceló D (2012) Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1248:104–121

    Article  CAS  Google Scholar 

  • Gros M, Rodríguez-Mozaz S, Barceló D (2013) Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1292:173–188

    Article  CAS  Google Scholar 

  • Horemans N, Van Hees M, Saenen E, Van Hoeck A, Smolders V, Blust R, Vandenhove H (2016) Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor. J Environ Radioac 151:427–437. https://doi.org/10.1016/j.jenvrad.2015.06.024

    Article  CAS  Google Scholar 

  • Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE (2008) Fifteen years after “Wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicological Sciences 105(2):235–259

    Article  CAS  Google Scholar 

  • Iori V, Zacchini M, Pietrini F (2013) Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture. J Hazard Mater 262:796–804

    Article  CAS  Google Scholar 

  • Jin M, Lu J, Chen Z, Nguyen SH, Mao L, Li J, Yuan Z, Guo J (2018) Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int 120:421–430

    Article  CAS  Google Scholar 

  • Johnson DJ, Sanderson H, Brain RA, Wilson CJ, Solomon KR (2007) Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotox Environ Safe 67:128–139

    Article  CAS  Google Scholar 

  • Kotyza J, Soudek P, Kafka Z, Vaněk T (2010) Phytoremediation of pharmaceuticals—preliminary study. Int J Phytoremediation 12:306–316

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. J Environ Manage 90:2354–2366

    Article  CAS  Google Scholar 

  • Kummerová M, Zezulka Š, Babula P, Tříska J (2016) Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. J Hazard Mater 302:351–361

    Article  CAS  Google Scholar 

  • Kusk KO, Christensen AM, Nyholm N (2018) Algal growth inhibition test results of 425 organic chemical substances. Chemosphere 204:405–412

    Article  CAS  Google Scholar 

  • Maeng J, Khudairi AK (1973) Studies on the flowering mechanism in Lemna. I. Amino acid changes during flower induction. Physiol Plant 28:264–270. https://doi.org/10.1111/j.1399-3054.1973.tb01187.x

    Article  CAS  Google Scholar 

  • Madden JC, Enoch SJ, Hewitt M, Cronin MT (2009) Pharmaceuticals in the environment: good practice in predicting acute ecotoxicological effects. Toxicol Lett 185:85–101

    Article  CAS  Google Scholar 

  • Markovic M, Neale PA, Nidumolu B, Kumar A (2021) Combined toxicity of therapeutic pharmaceuticals to duckweed. Lemna minor. Ecotox Environ Safe 208:111428

    Article  CAS  Google Scholar 

  • Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–995

    Article  CAS  Google Scholar 

  • Miege C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants–conception of a database and first results. Environ Poll 157:1721–1726

    Article  CAS  Google Scholar 

  • Minagh E, Hernan R, O’Rourke K, Lyng FM, Davoren M (2009) Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotox Environ Safe 72:434–440

    Article  CAS  Google Scholar 

  • Mukhtar A, Manzoor M, Gul I, Zafar R, Jamil HI, Niazi AK, Ali MA, Park TJ, Arshad M (2020) Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments. Chemosphere 258:127353

    Article  CAS  Google Scholar 

  • Munkegaard M, Abbaspoor M, Cedergreen N (2008) Organophosphorous insecticides as herbicide synergists on the green algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor. Ecotoxicology 17:29–35. https://doi.org/10.1007/s10646-007-0173-x

    Article  CAS  Google Scholar 

  • OECD. (2006). Test No. 221: Lemna sp. Growth Inhibition Test. Guideline for Testing Chemicals, March, 1–26. https://doi.org/10.1787/9789264016194-en

  • Orias F, Perrodin Y (2013) Characterisation of the ecotoxicity of hospital effluents: a review. Sci Total Environ 454:250–276

    Article  CAS  Google Scholar 

  • Paíga P, Correia M, Fernandes MJ, Silva A, Carvalho M, Vieira J, Jorge S, Silva JG, Freire C, Delerue-Matos C (2019) Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci Total Environ 648:582–600

    Article  CAS  Google Scholar 

  • Pivetta RC, Rodrigues-Silva C, Ribeiro AR, Rath S (2020) Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. Sci Total Environ 727:138661

    Article  CAS  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67:387–396

    Article  CAS  Google Scholar 

  • Ramírez-Morales D, Masís-Mora M, Beita-Sandí W, Montiel-Mora JR, Fernández-Fernández E, Méndez-Rivera M, Arias-Mora V, Leiva-Salas A, Brenes-Alfaro L, Rodríguez-Rodríguez CE (2021a) Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. Chemosphere 272:129574

  • Ramírez-Morales D, Masis-Mora M, Montiel-Mora JR, Cambronero-Heinrichs JC, Briceño-Guevara S, Rojas-Sánchez CE, Méndez-Rivera M, Arias-Mora V, Tormo-Budowski R, Brenes-Alfaro L, Rodríguez-Rodríguez CE (2020) Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of WWTPs in Costa Rica. Sci Total Environ 746:141200

  • Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Cambronero-Heinrichs JC, Pérez-Rojas G, Tormo-Budowski R, Méndez-Rivera M, Briceño-Guevara S, Gutiérrez-Quirós JA, Arias-Mora V, Brenes-Alfaro L, Beita-Sandí W, Rodríguez-Rodríguez CE (2021b) Multiresidue analysis of pharmaceuticals in water samples by liquid chromatography-mass spectrometry: quality assessment and application to the risk assessment of urban-influenced surface waters in a metropolitan area of Central America. Process Saf Environ 153:289–300

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287

    Article  CAS  Google Scholar 

  • Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS ONE 10:1–13. https://doi.org/10.1371/journal.pone.0146021

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395

    Article  CAS  Google Scholar 

  • Sim WJ, Lee JW, Lee ES, Shin SK, Hwang SR, Oh JE (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82:179–186

    Article  CAS  Google Scholar 

  • Sørensen H, Cedergreen N, Skovgaard IM, Streibig JC (2007) An isobole-based statistical model and test for synergism/antagonism in binary mixture toxicity experiments. Environ Ecol Stat 14:383–397. https://doi.org/10.1007/s10651-007-0022-3

    Article  Google Scholar 

  • Technical University of Denmark (2018) User Manual for the Danish (Q)SAR Database [WWW Document]. URL http://qsardb.food.dtu.dk/DB_user_manual_21_12_2018.pdf Accessed 05 June 2021

  • Timmerer U, Lehmann L, Schnug E, Bloem E (2020) Toxic effects of single antibiotics and antibiotics in combination on germination and Growth of Sinapis alba L. Plants 9:107

    Article  CAS  Google Scholar 

  • Vasquez MI, Lambrianides A, Schneider M, Kümmerer K, Fatta-Kassinos D (2014) Environmental side effects of pharmaceutical cocktails: what we know and what we should know. J Hazard Mater 279:169–189

    Article  CAS  Google Scholar 

  • Villain J, Minguez L, Halm-Lemeille MP, Durrieu G, Bureau R (2016) Acute toxicities of pharmaceuticals toward green algae. mode of action, biopharmaceutical drug disposition classification system and quantile regression models. Ecotox Environ Safe 124:337–343. https://doi.org/10.1016/j.ecoenv.2015.11.009

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Mao L, Li J, Yuan Z, Bond PL, Guo J (2019) Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J 13:509–522

    Article  CAS  Google Scholar 

  • Wieczerzak M, Kudłak B, Yotova G, Nedyalkova M, Tsakovski S, Simeonov V, Namieśnik J (2016) Modeling of pharmaceuticals mixtures toxicity with deviation ratio and best-fit functions models. Sci Total Environ 571:259–268

    Article  CAS  Google Scholar 

  • Zhou X, Wang J, Lu C, Liao Q, Gudda FO, Ling W (2020) Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 255:127006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vicerrectoría de Investigación, University of Costa Rica (Projects 802-B7-508; 802-B8-510; 802-C1-034) and the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (Project FI-097B-17). D. Ramírez-Morales and D. Fajardo-Romero acknowledge the European Union (project KNOWPEC, grant agreement 690918 H2020-MSCA-RISE-2015).

Funding

This work was supported by Vicerrectoría de Investigación, University of Costa Rica (Projects 802-B7-508; 802-B8-510; 802-C1-034); the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (Project FI-097B-17).

Author information

Authors and Affiliations

Authors

Contributions

DRM: conceptualization, methodology, formal analysis, investigation, writing - original draft, writing - review & editing. DFR: investigation, methodology, formal analysis. CERR: conceptualization, project administration, writing - original draft, writing – review & editing, funding acquisition. NC: conceptualization, project administration, writing - original draft, writing – review & editing, funding acquisition.

Corresponding author

Correspondence to Carlos E. Rodríguez-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Morales, D., Fajardo-Romero, D., Rodríguez-Rodríguez, C.E. et al. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. Ecotoxicology 31, 714–724 (2022). https://doi.org/10.1007/s10646-022-02537-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02537-3

Keywords

Navigation