Skip to main content

Advertisement

Log in

Mercury bioaccumulation in tropical bats from a region of active artisanal and small-scale gold mining

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Mercury negatively affects human and animal health. Artisanal and small-scale gold mining can be a major local source of mercury contamination, especially into aquatic systems in tropical areas. Animals associated with mercury-contaminated aquatic systems are at high risk of experiencing effects of this heavy metal, but it is not clear how far the effects may extend into nearby terrestrial systems. We report mercury contamination levels in bats in agricultural areas at increasing distances from gold mining (~3–89 km of distance). We hypothesized that bat mercury concentrations would differ between feeding guilds, land use types, and be higher at sites closer to gold mining areas. We collected 112 fur samples from 30 bat species and eight guilds, and provide the first reports of concentrations in 12 species. All mercury concentrations were below the level at which health is likely to be affected (10 ppm). We found guild-influenced differences among mercury concentration levels, with the highest concentrations in aerial insectivores and carnivores, and the lowest in canopy frugivores. Our results suggest insectivorous and carnivorous bats may still be at some risk even at sites distant from aquatic mercury contamination. We did not find an effect of agricultural land-use type on mercury concentrations within species or guilds, suggesting mercury contamination did not extend to agricultural sites from areas of gold mining activities, and that these agricultural activities themselves were not an important source of mercury. We conclude bats did not demonstrate a signature of mercury risk either as a result of proximity of gold mining, or as a result of agricultural activities.

RESUMEN

Mercurio afecta negativamente la salud de humanos y animales. La minería aurífera artesanal o de pequeña escala puede ser una gran fuente local de contaminación por mercurio, especialmente en sistemas acuáticos de áreas tropicales. Los animales asociados a sistemas acuáticos contaminados por mercurio se encuentran en alto riesgo de experimentar efectos de este metal pesado, pero no es claro que tan lejos pueden extenderse los efectos en los sistemas terrestres cercanos. Reportamos niveles de contaminación por mercurio en murciélagos en áreas agrícolas a distancias cada vez mayores de la minería aurífera (~3–89 km). Hipotetizamos que las concentraciones de mercurio en murciélagos diferiran entre gremios alimenticios, tipos de uso de tierra y serán mayores en sitios cercanos a las áreas de minería aurífera. Colectamos 112 muestras de 30 especies de murciélagos y ocho gremios y brindamos los primeros reportes de las concentraciones de mercurio en 12 especies. Todas las concentraciones de mercurio se encontraron por debajo del nivel al cual la salud podría verse afectada (10 ppm). Encontramos que los gremios influyeron en las diferencias entre los niveles de concentración de mercurio, con las mayores concentraciones en insectívoros aéreos y carnívoros, y los menores niveles en frugívoros de dosel. Nuestros resultados murciélagos insectívoros y carnívoros aún pueden encontrarse bajo riesgo incluso en los sitios más alejados de las zonas de contaminación acuática por mercurio. No encontramos efecto del tipo de uso agrícola en las concentraciones de mercurio entre especies o gremios, sugiriendo que la contaminación por mercurio no se extendió a sitios agrícolas desde las áreas de actividad minera aurífera y que las actividades agrícolas por sí mismas no son fuentes importantes de mercurio. Concluímos que los murciélagos como indicadores no desmostraron signos de riesgo por mercurio como resultado de la proximidad con la minería aurífera, ni como resultado de las actividades agrícolas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguiar LMS, Antonini Y (2008) Diet of two sympatric insectivores bats (Chiroptera: Vespertilionidae) in the Cerrado of Central Brazil. Revista Brasileira de Zoologia 25(1):28–31

    Google Scholar 

  • Asociación para la Investigación y Desarrollo Integral, Ministerio del Ambiente and International Tropical Timber Organization (2012) Estimaciones de los cambios en el carbono almacenado y emisiones de gases efecto invernadero producidas por deforestacion no planificada en escenario de linea base de la comunidad nativa de Infierno – región Madre de Dios. Proyecto Gestión Forestal Sostenible y Aprovechamiento de los Servicios Ecosistémicos en los Bosques Administrados por la Comunidad Nativa Ese Eja de Infierno, Perú. Puerto Maldonado, Madre de Dios, Peru

    Google Scholar 

  • Barbosa AC, de Souza J, Dorea JG, Jardim WF, Fadini PS (2003) Mercury biomagnification in a tropical black water, Rio Negro, Brazil. Arch Environ Contam Toxicol 45:235–246. https://doi.org/10.1007/s00244-003-0207-1

    Article  CAS  Google Scholar 

  • Basri, S M, Sera K, Kurniawan IA (2017) Mercury contamination of cattle in artisanal and small-scale gold mining in Bombana, Southeast Sulawesi, Indonesia. Geosciences 7. https://doi.org/10.3390/geosciences7040133

  • Becker DJ, Chumchal MM, Bentz AB, Platt SG, Czirjak GA, Rainwater TR, Altizer S, Streicker DG (2017) Predictors and immunological correlates of sublethal mercury exposure in vampire bats. R Soc Open Sci 4. https://doi.org/10.1098/rsos.170073

  • Becker DJ, Chumchal MM, Broders HG, Korstian JM, Clare EL, Rainwater TR, Platt SG, Simmons NB, Fenton MB (2018) Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs. Environ Pollut 233:1076–1085. https://doi.org/10.1016/j.envpol.2017.10.010

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochem Environ Important Trace Elem 835:262–297

    CAS  Google Scholar 

  • Bernard E, Fenton MB (2003) Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Biotropica 35(2):262–277

    Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. https://doi.org/10.1016/s0045-6535(99)00283-0

    Article  CAS  Google Scholar 

  • Branches FJP, Erickson TB, Aks SE, Hryhorczuk DO (1993) The price of gold - mercury exposure in the Amazonian rain-forest. J Toxicol-Clin Toxicol 31:295–306. https://doi.org/10.3109/15563659309000396

    Article  CAS  Google Scholar 

  • Brigham RM, Saunders MB (1990) The diet of big brown bats (Eptesicus fuscus) in relation to insect availability in southern Alberta, Canada. Northwest Sci 64:7–10

    Google Scholar 

  • Brigham RM, Fenton MB (1991) Convergence in foraging strategies by two morphologically and phylogenetically distinct nocturnal aerial insectivores. J Zool 223:475–489

    Google Scholar 

  • Brito JEC, Miranda JMD, Bernardi IP, Passos FC (2010) Predation of tadarida brasiliensis by chrotopterus auritus in south Brazil. Chiropt Neotrop 16:46–47

    Google Scholar 

  • Carrasco-Rueda F (2018) Land-use change and bat biodiversity: understanding patterns, drivers, and impacts of mitigation efforts. Unpubl. Dissertation, University of Florida

  • Chetelat J, Hickey MBC, Poulain AJ, Dastoor A, Ryjkov A, McAlpine D, Vanderwolf K, Jung TS, Hale L, Cooke ELL, Hobson D, Jonasson K, Kaupas L, McCarthy S, McClelland C, Morningstar D, Norquay KJO, Novy R, Player D, Redford T, Simard A, Stamler S, Webber QMR, Yumvihoze E, Zanuttig M (2018) Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition. Sci Total Environ 626:668–677

    CAS  Google Scholar 

  • Chumchal MM, Rainwater TR, Osborn SC, Roberts AP, Abel MT, Cobb GP, Smith PN, Bailey FC (2011) Mercury speciation and biomagnifications in the food web of Caddo Lake, Texas and Louisiana, USA, a subtropical freshwater ecosystem. Environ Toxicol Chem 30(5):1153–1162

    CAS  Google Scholar 

  • Chumchal MM, Drenner RW (2015) An environmental problem hidden in plain sight? Small human-made ponds, emergent insects, and mercury contamination of biota in the Great Plains. Environ Toxicol Chem 34:1197–1205

    CAS  Google Scholar 

  • Clawson RL, Clark DR (1989) Pesticide contamination of endangered gray bats and their food base in Boone County, Missouri, 1982. Bull Environ Contam Toxicol 42:431–437

    CAS  Google Scholar 

  • Constantini D, Czirják GÁ, Bustamante P, Bumrungsri S, Voigt CC (2019) Impacts of land use on an insectivorous tropical bat: The importance of mercury, physio-immunology and trophic position. Sci Total Environ 671:1077–1085. https://doi.org/10.1016/j.scitotenv.2019.03.398

    Article  CAS  Google Scholar 

  • Contreras Luna J, Chávez Estibur E (2017) Concentración de mercurio en el orden quiróptera en la zona de influencia minera de la cuenca del río Madre de Dios. Thesis. Universidad Nacional Agraria La Molina

  • Cramer MJ, Willig MR, Jones C (2001) Trachops cirrhosus. Mammalian Species 656:1–6

    Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic Mercury through terrestrial food webs. Science 320:335–335. https://doi.org/10.1126/science.1154082

    Article  CAS  Google Scholar 

  • Diaz MM, Solari S, Aguirre LF, Aguiar LMS, Barquez RM (2016) Clave de identificación de los murciélagos de Sudamerica. Publicación Especial N °2, PCMA (Programa de Conservación de los Murciélagos de Argentina)

  • Elliott JE, Kirk DA, Elliott KH, Dorzinsky J, Lee S, Inzunza ER, Cheng KMT, Scheuhammer T, Shaw P (2015) Mercury in forage fish from Mexico and Central America: implications for fish-eating birds. Arch Environ Contam Toxicol 69:375–389. https://doi.org/10.1007/s00244-015-0188-x

    Article  CAS  Google Scholar 

  • Elliott KH, Elliott JE (2016) Origin of sulfur in diet drives spatial and temporal mercury trends in seabird eggs from Pacific Canada 1968–2015. Environ Sci Technol 50:13380–13386. https://doi.org/10.1021/acs.est.6b05458

    Article  CAS  Google Scholar 

  • Elmes A, Ipanaque JGY, Rogan J, Cuba N, Bebbington A (2014) Mapping licit and illicit mining activity in the Madre de Dios region of Peru. Remote Sens Lett 5:882–891. https://doi.org/10.1080/2150704x.2014.973080

    Article  Google Scholar 

  • Emiliano SB, Pereira LA, Pressinatte Jr S, Deliberador Miranda JM (2017) Diet of insectivorous bats (Mammalia: Chiroptera) in fragments of Araucaria Pine Forest, Southern Brazil. Revista Brasileira de Zoociencias 18:187–196

    Google Scholar 

  • Engstrom DR, Fitzgerald WF, Cooke CA, Lamborg CH, Drevnick PE, Swain EB, Balogh SJ, Balcom PH (2014) Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: A reevaluation from lake-sediment archives. Environ Sci Technol 48:6533–6543. https://doi.org/10.1021/es405558e

    Article  CAS  Google Scholar 

  • Fenton MB, Rautenbach IL, Rydell J, Arita HT, Ortega J, Bouchard S, Hovorka MD, Lim B, Odgren E, Portfors CV, Scully WM, Syme DM, Vonhof MJ (1998) Emergence, echolocation, diet and foraging behavior of Molossus ater (Chiroptera: Molossidae). Biotropica 30:314–320

    Google Scholar 

  • Finer M, Mamani N, García R, Novoa S (2018) Hotspots de Deforestación en la Amazonía Peruana, 2017. MAAP 78

  • Frederick PC, Spalding MG, Dusek R (2001) Wading birds as bioindicators of mercury contamination in Florida: annual and geographic variation. Environ Toxicol Chem 21:262–264

    Google Scholar 

  • Fuchsman PC, Brown LE, Henning MH, Bock MJ, Magar VS (2017) Toxicity reference values for methylmercury effects on avian reproduction: Critical review and analysis. Environ Toxicol Chem 36:294–319. https://doi.org/10.1002/etc.3606

    Article  CAS  Google Scholar 

  • Fukui D, Murakami M, Nakano S, Aoi T (2006) Effect of emergent insects on bat foraging in a riparian forest. J Anim Ecol 75:1252–1258

    Google Scholar 

  • Gardner AL (2007) Mammals of South America. Volume 1: Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago, IL, and London, United Kingdom

    Google Scholar 

  • Giannini NP, Barquez RM (2003) Sturnira erythromos. Mamm Species 729:1–5. https://doi.org/10.1644/729

    Article  Google Scholar 

  • Heiker LM, Adams RA, Ramos CV (2018) Mercury bioaccumulation in two species of insectivorous bats from urban China: Influence of species, age, and land use type. Arch Environ Contam Toxicol 75(4):585–93

    CAS  Google Scholar 

  • Henry M, Kalko EKV (2007) Foraging strategy and breeding constraints of Rhinophylla pumilio (Phyllostomidae) in the Amazon lowlands. J Mamm 88:81–93. https://doi.org/10.1644/06-mamm-a-001r1.1

    Article  Google Scholar 

  • Howie MG, Jackson AK, Cristol DA (2018) Spatial extent of mercury contamination in birds and their prey on the floodplain of a contaminated river. Sci Total Environ 630:1446–1452. https://doi.org/10.1016/j.scitotenv.2018.02.272

    Article  CAS  Google Scholar 

  • Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the squatic environment: a critical review. Environ Sci Technol 47:2441–2456. https://doi.org/10.1021/es304370g

    Article  CAS  Google Scholar 

  • Kalko EKV (1997) Diversity in tropical bats. In: Ulrich H (ed) Tropical biodiversity and systematics. Zool. Forschungsinstitut und Museum Alexander Koenig, Bonn, p 13–43

    Google Scholar 

  • Karouna-Renier NK, White C, Perkins CR, Schmerfeld JJ, Yates D (2014) Assessment of mitochondrial DNA damage in little brown bats (Myotis lucifugus) collected near a mercury-contaminated river. Ecotoxicology 23:1419–1429. https://doi.org/10.1007/s10646-014-1284-9

    Article  CAS  Google Scholar 

  • Kim EY, Murakami T, Saeki K, Tatsukawa R (1996) Mercury levels and its chemical form in tissues and organs of seabirds. Arch Environ Contam Toxicol 30:259–266

    CAS  Google Scholar 

  • Kocman D, Wilson SJ, Amos HM, Telmer KH, Steenhuisen F, Sunderland EM, Mason RP, Outridge P, Horvat L (2017) Toward an assesment of the global inventory of present-day mercury releases to freshwater environments. Int J Environ Res Public Health 14:138

    Google Scholar 

  • Korine C, Adams R, Russo D, Fisher-Phelps M, Jacobs D (2016) Bats and water: anthropogenic alterations threaten global bat populations. In: Voigt CC, Kingston T (eds) Bats in the anthropocene: conservation of bats in a changing world. Springer, Cham Heidelberg New York Dordrecht London, p 215–241

    Google Scholar 

  • Kumar A, Divoll TJ, Ganguli PM, Trama FA, Lamborg CH (2018) Presence of artisanal gold mining predicts mercury bioaccumulation in five genera of bats (Chiroptera). Environ Pollut 236:862–870. https://doi.org/10.1016/j.envpol.2018.01.109

    Article  CAS  Google Scholar 

  • Lacher TE, Goldstein MI (1997) Tropical ecotoxicology: status and needs. Environ Toxicol Chem 16:100–111. https://doi.org/10.1897/1551-5028(1997)016<0100:tesan>2.3.co;2

    Article  CAS  Google Scholar 

  • López-Baucells A, Rocha R, Bobrowiec P, Bernard E, Palmeirim J, Meyer C (2016) Field guide to Amazonian bats. INPA, Manaus, Brasil

    Google Scholar 

  • Malm O, Pfeiffer WC, Souza CMM, Reuther R (1990) Mercury pollution due to gold mining in the Madeira river basin, Brazil. Ambio 19(1):11–15

    Google Scholar 

  • Marrugo-Negrete J, Durango-Hernandez J, Calao-Ramos C, Urango-Cardenas I, Diez S (2019) Mercury levels and genotoxic effect in caimans from tropical ecosystems impacted by gold mining. Sci Total Environ 664:899–907. https://doi.org/10.1016/j.scitotenv.2019.01.340

    Article  CAS  Google Scholar 

  • Mason RP, Laporte JM, Andres S (2000) Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38:283–297. https://doi.org/10.1007/s002449910038

    Article  CAS  Google Scholar 

  • Maurice-Bourgoin L, Quiroga I, Guyot JL, Malm O (1999) Mercury pollution in the upper Beni River basin, Bolivia. Ambio 28(4):302–306

    Google Scholar 

  • McGrew AK, Ballweber LR, Moses SK, Stricker CA, Beckmen KB, Salman MD, O’Hara TM (2014) Mercury in gray wolves (Canis lupus) in Alaska: Increased exposure through consumption of marine prey. Sci Total Environm 468:609–613. https://doi.org/10.1016/j.scitotenv.2013.08.045

    Article  CAS  Google Scholar 

  • Menzie CA (1980) Potential significance of insects in the removal of contaminants from aquatic systems. Water Air Soil Pollut 13:473–479

    Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36:3–11. https://doi.org/10.1579/0044-7447(2007)36[3:meahei]2.0.co;2

    Article  CAS  Google Scholar 

  • Miura T, Koyama T, Nakamura I (1978) Mercury content in museum and recent specimens of Chiroptera in Japan. Bull Environm Contam Toxicol 20:696–701

    CAS  Google Scholar 

  • Moreno-Brush M, Portillo A, Brandel SD, Storch I, Tschapka M, Biester H (2018) Mercury concentrations in bats (Chiroptera) from a gold mining area in the Peruvian Amazon. Ecotoxicology 27:45–54. https://doi.org/10.1007/s10646-017-1869-1

    Article  CAS  Google Scholar 

  • Morrison DW (1978) Foraging ecology and energetics of the frugivorous bat Artibeus jamaicensis. Ecology 59:716–723

    Google Scholar 

  • Nam DH, Yates D, Ardapple P, Evers DC, Schmerfeld J, Basu N (2012) Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology 21:1094–1101. https://doi.org/10.1007/s10646-012-0864-9

    Article  CAS  Google Scholar 

  • Naughton-Treves L, Mena JL, Treves A, Alvarez N, Radeloff VC (2003) Wildlife survival beyond park boundaries: the impact of slash-and-burn agriculture and hunting on mammals in Tambopata, Peru. Conserv Biol 17:1106–1117. https://doi.org/10.1046/j.1523-1739.2003.02045.x

    Article  Google Scholar 

  • Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219. https://doi.org/10.1016/S0048-9697(03)00139-6

    Article  CAS  Google Scholar 

  • Nriagu JO, Pfeiffer WC, Malm O, Souza CMM, Mierle G (1992) Mercury pollution in Brazil. Nature 356:389

    CAS  Google Scholar 

  • Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47:116–140. https://doi.org/10.1007/s13280-017-1004-9

    Article  CAS  Google Scholar 

  • O’Shea TJ, Everette AL, Ellison LE (2001) Cyclodiene insecticide, DDE, DDT, arsenic, and mercury contamination of big brown bats (Eptesicus fuscus) foraging at a Colorado Superfund site. Arch Environ Contam Toxicol 40:112–120

    Google Scholar 

  • Pacyna JM, Pacyna EG (2005) Anthropogenic sources and global inventory ofmercury emissions. In: Parsons MB, Percival JB (eds) Mercury: sources, measurements, cycles, and effects. Mineralogical Association of Canada, Ottawa

    Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Botanical Rev 66:379–422

    Google Scholar 

  • Pirrone N, Aas W, Cinnirella S, Ebinghaus R, Hedgecok IM, Pacyna J, Sprovieri F, Sunderland EM (2013) Toward the next generation of air quality monitoring: Mercury. Atmos Environ 80:599–611

    CAS  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.or. Accessed 10 Apr 2019

  • Ramirez-Chaves HE, Mejia-Egas O, Zambrano-G G (2008) Notes on reproduction, activity and preys items found in stomach contents and feces of a colony of Pallas’s mastiff bat (Molossus molossus) located in the urban sector of Popayan municipality, Cauca, Colombia. Chiropt Neotrop 14:384–390

    Google Scholar 

  • Roulet M, Lucotte M, Farella N, Serique G, Coelho H, Passos CJS, da Silva ED, de Andrade PS, Mergler D, Guimaraes JRD, Amorim M (1999) Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water Air Soil Pollut 112:297–313

    CAS  Google Scholar 

  • Sampaio EM, Kalko EKV, Bernard E, Rodriguez-Herrera B, Handley CO (2003) A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including methodological and conservation considerations. Stud Neotrop Fauna Environ 38:17–31. https://doi.org/10.1076/snfe.38.1.17.14035

    Article  Google Scholar 

  • Scheiner SM, Kosman E, Presley SJ, Willig MR (2017) Decomposing functional diversity. Methods Ecology Evolut 8:809–920. https://doi.org/10.1111/2041-210X.12696

    Article  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish Ambio 36:12–18. https://doi.org/10.1579/0044-7447(2007)36[12:eoemot]2.0.co;2

    Article  CAS  Google Scholar 

  • Schnitzler HU, Kalko EKV (1998) How echolocation bats fly and find food. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington (DC), p 183–196

    Google Scholar 

  • Scullion JJ, Vogt KA, Sienkiewicz A, Gmur SJ, Trujillo C (2014) Assessing the influence of land-cover change and conflicting land-use authorizations on ecosystem conversion on the forest frontier of Madre de Dios, Peru. Biol Conserv 171:247–258. https://doi.org/10.1016/j.biocon.2014.01.036

    Article  Google Scholar 

  • Syaripuddin K, Kumar A, Sing KW, Halim MRA, Nursyereen MN, Wilson JJ (2014) Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia. Ecotoxicology 23:1164–1171. https://doi.org/10.1007/s10646-014-1258-y

    Article  CAS  Google Scholar 

  • Turull M, Komarova T, Noller B, Fontas C, Diez S (2018) Evaluation of mercury in a freshwater environment impacted by an organomercury fungicide using diffusive gradient in thin films. Sci Total Environ 621:1475–1484. https://doi.org/10.1016/j.scitotenv.2017.10.081

    Article  CAS  Google Scholar 

  • Uieda W, Sato TM, de Carvalho MC, Bonato V (2007) Fruits as unusual food items of the carnivorous bat Chrotopterus auritus (Mammalia, Phyllostomidae) from southeastern Brazil. Revista Brasileira De Zoologia 24:844–847

    Google Scholar 

  • UN Environment (2019) Global mercury assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland

    Google Scholar 

  • Uryu Y, Malm O, Thornton I, Payne I, Cleary D (2001) Mercury contamination of fish and its implications for other wildlife of the Tapajos Basin, Brazilian Amazon. Conserv Biol 15:438–446. https://doi.org/10.1046/j.1523-1739.2001.015002438.x

    Article  Google Scholar 

  • Verts BJ, Carraway LN, Whitaker Jr JO (1999) Temporal variation in prey consumed by big brown bats (Eptesicus fuscus) in a maternity colony. Northwest Sci 73:114–120

    Google Scholar 

  • Viswanathan PN, Krishna Murti CR (1989) Effects of temperature and humidity on ecotoxicology of chemicals. In: Bourdeau P, Haines JA, Klein W, Krishna Murti CR (eds) Ecotoxicology and Climate with Special Reference to Hot and Cold Climates. John Wiley & Sons, New York, NY, p 139–154

    Google Scholar 

  • Walters DM, Fritz KM, Otter RR (2008) The dark side of subsidies: adult stream insects export organic contaminants to riparian predators. Ecol Appl 18(8):1835–1841

    Google Scholar 

  • Whitaker JO,Jr, Frank PA (2012) Foods of little free-tailed bats, Molossus molossus, from Boca Bhica Key, Monroe county, Florida. Fla Sci 75:249–252

    Google Scholar 

  • Wickham H (2016) Elegant graphics for data analysis. Springer-Verlag, New York, NY

    Google Scholar 

  • Witt AA, Fabian ME (2010) Food habits and use of roosts by Chrotopterus auritus (Chiroptera, Phyllostomidae). Mastozool Neotrop 17:353–360

    Google Scholar 

  • Yancey II FD, Goetze JR, Jones C (1998) Saccopteryx bilineata. Mamm Species 581:1–5

    Google Scholar 

  • Zukal J, Pikula J, Bandouchova H (2015) Bats as bioindicators of heavy metal pollution: history and prospect. Mamm Biol 80:220–227. https://doi.org/10.1016/j.mambio.2015.01.001

    Article  Google Scholar 

Download references

Acknowledgements

We thank Juan Carlos Suaña, Brian Málaga, Yolanda Alcarraz, Diego Zavala, Luiggi Carrasco, Katherin Mares, Werner Pinero, and Diego Juarez–Sanchez for their invaluable support during field work. We also thank Lewis and Clark Fund for Exploration and Field Research Grant by the American Philosophical Society, Cleveland Zoological Society and Cleveland Metroparks Zoo conservation grant program, and Bat Conservation International for funding the fieldwork and laboratory analysis for this study. We thank Dr. Samantha Wisely, Courtney Pylant, and Diego Juarez-Sanchez for their support to undertake the decontamination of samples. We thank Lindsey Garner, Jabi Zabala for their support during the mercury-content analysis. This study was undertaken under the following permits: University of Florida IACUC Study #201708351, Resolución Directoral Regional No. 948-2016-GOREMAD-GRRNYGA/DRFFS, exportation permit No. 03211-SERFOR, importation permit: CDC PHS Permit NO. 2017-12-017.

Funding

This study was funded by Lewis and Clark Fund for Exploration and Field Research Grant by the American Philosophical Society, Cleveland Zoological Society and Cleveland Metroparks Zoo conservation grant program, and Bat Conservation International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Carrasco-Rueda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of University of Florida IACUC Study #201708351. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco-Rueda, F., Loiselle, B.A. & Frederick, P.C. Mercury bioaccumulation in tropical bats from a region of active artisanal and small-scale gold mining. Ecotoxicology 29, 1032–1042 (2020). https://doi.org/10.1007/s10646-020-02195-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02195-3

Keywords

Palabras clave

Navigation