Skip to main content
Log in

Gene expression profiling of three different stressors in the water flea Daphnia magna

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene fragments over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre-Sierra A, Alonso A, Camargo JA (2011) Contrasting Sensitivities to Fluoride Toxicity between Juveniles and Adults of the Aquatic Snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull Environ Contam Toxicol 86(5):476–479. doi:10.1007/s00128-011-0241-z

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate-a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57(1):289–300

    Google Scholar 

  • Boersma M, Spaak P, De Meester L (1998) Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. Am Nat 152(2):237–248. doi:10.1086/286164

    Article  CAS  Google Scholar 

  • Brown AE (2006) Mode of action of insecticides and related pest control chemicals for production agriculture, ornamentals, and turf. Neurology 43:1150–1158

    Google Scholar 

  • Carius HJ, Little TJ, Ebert D (2001) Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution 55(6):1136–1145. doi:10.1554/0014-3820(2001)055

    CAS  Google Scholar 

  • Coeurdassier M, de Vaufleury A, Scheifler R, Morhain E, Badot PM (2004) Effects of cadmium on the survival of three life-stages of the freshwater pulmonate Lymnaea stagnalis (Mollusca:gastropoda). Bull Environ Contam Toxicol 72(5):1083–1090. doi:10.1007/s00128-004-0354-8

    Article  CAS  Google Scholar 

  • Coors A, Decaestecker E, Jansen M, De Meester L (2008) Pesticide exposure strongly enhances parasite virulence in an invertebrate host model. Oikos 117(12):1840–1846. doi:10.1111/j.1600-0706.2008.17028.x

    Article  Google Scholar 

  • Coors A, Vanoverbeke J, De Bie T, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquat Toxicol 95(1):71–79. doi:10.1016/j.aquatox.2009.08.004

    Article  CAS  Google Scholar 

  • Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F (2001) Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. P Natl Acad Sci USA 98(11):6256–6260. doi:10.1073/pnas.111606798

    Article  CAS  Google Scholar 

  • Das TK, Mani V, De S, Banerjee D, Mukherjee A, Polley S, Kewalramani N, Kaur H (2012) Effect of vitamin E supplementation on mRNA expression of superoxide dismutase and Interleukin-2 in arsenic exposed goat leukocytes. Bull Environ Contam Toxicol 89(6):1133–1137. doi:10.1007/s00128-012-0825-2

    Article  CAS  Google Scholar 

  • De Meester L (1993) Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna. Ecology 74(5):1467–1474

    Article  Google Scholar 

  • De Meester L, Cousyn C (1997) The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones: the effect of exposure time. Hydrobiologia 360:169–175. doi:10.1023/a:1003119827390

    Article  Google Scholar 

  • De Meester L, Dawidowicz P, van Gool E, Loose E (1999) Ecology and evolution of predator-induced behavior in zooplankton: depth selection behavior and diel vertical migration In: Tollrian R, harvell CD (eds) The ecology and evolution of inducible defences. Princeton University Press****, Princeton, pp 160–176

    Google Scholar 

  • De Wit M, Keil D, Remmerie N, van der Ven K, van den Brandhof E-J, Knapen D, Witters E, De Coen W (2008) Molecular targets of TBBPA in zebrafish analysed through integration of genomic and proteomic approaches. Chemosphere 74(1):96–105. doi:10.1016/j.chemosphere.2008.09.030

    Article  Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450(7171):870–873. doi:10.1038/Nature06291

    Article  CAS  Google Scholar 

  • Decaestecker E, Labbe P, Ellegaard K, Allen JE, Little TJ (2011) Candidate innate immune system gene expression in the ecological model Daphnia. Dev Comp Immunol 35(10):1066–1075. doi:10.1016/j.dci.2011.04.004

    Article  CAS  Google Scholar 

  • Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S, Van Wichelen J, Gillard V, Mandiki R, Losson B, Bauwens D, Keijers S, Vyverman W, Goddeeris B, De Meester L, Brendonck L, Martens K (2006) Ecological characteristic’s of small farmland ponds: associations with land use practices at multiple spatial scales. Biol Conserv 131(4):523–532. doi:10.1016/j.biocon.2006.02.024

    Article  Google Scholar 

  • Dom N, Nobels I, Knapen D, Blust R (2011) Bacterial gene profiling assay applied as an alternative method for mode of action classification: pilot study using chlorinated anilines. Environ Toxicol Chem 30(5):1059–1068. doi:10.1002/etc.476

    Article  CAS  Google Scholar 

  • Dom N, Vergauwen L, Vandenbrouck T, Jansen M, Blust R, Knapen D (2012) Physiological and molecular effect assessment versus physico-chemistry based mode of action schemes: Daphnia magna exposed to narcotics and polar narcotics. Environ Sci Technol 46(1):10–18. doi:10.1021/es201095r

    Article  CAS  Google Scholar 

  • Duncan AB, Little TJ (2007) Parasite-driven genetic change in a natural population of Daphnia. Evolution 61(4):796–803. doi:10.1111/j.1558-5646.2007.00072.x

    Article  Google Scholar 

  • Duneau D, Ebert D (2012) The role of moulting in parasite defence. Proc R Soc B 279(1740):3049–3054. doi:10.1098/rspb.2012.0407

    Article  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology and evolution of parasitism in Daphnia. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology. Information (http://www.ncbi.nlm.nih.gov/books/bookres.fcgi/daph/screenA4.pdf)

  • Ebert D (2008) Host-parasite coevolution: insights from the Daphnia-parasite model system. Curr Opin Microbiol 11(3):290–301. doi:10.1016/j.mib.2008.05.012

    Article  CAS  Google Scholar 

  • Ebert D, Lipsitch M, Mangin KL (2000) The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. Am Nat 156(5):459–477. doi:10.1086/303404

    Article  Google Scholar 

  • Feder ME, Mitchell-Olds T (2003) Evolutionary and ecological functional genomics. Nat Rev Genet 4(8):651–657. doi:10.1038/nrg1128

    Article  CAS  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin G, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974

    CAS  Google Scholar 

  • Garcia-Reyero N, Escalon BL, Loh PR, Laird JG, Kennedy AJ, Berger B, Perkins EJ (2012) Assessment of chemical mixtures and groundwater effects on Daphnia magna transcriptomics. Environ Sci Technol 46(1):42–50. doi:10.1021/es201245b

    Article  CAS  Google Scholar 

  • Hanazato T (1991) Effects of long-term and short-term exposure to carbaryl on surviavl, growth and reproduction of Daphnia ambigua. Environ Pollut 74(2):139–148. doi:10.1016/0269-7491(91)90110-i

    Article  CAS  Google Scholar 

  • Hanazato T, Hirokawa H (2004) Changes in vulnerability of Daphnia to an insecticide application depending on the population phase. Freshw Biol 49(4):402–409. doi:10.1111/j.1365-2427.2004.01191.x

    Article  CAS  Google Scholar 

  • Heckmann L-H, Sibly RM, Connon R, Hooper HL, Hutchinson TH, Maund SJ, Hill CJ, Bouetard A, Callaghan A (2008) Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biol 9(2):R40. doi:10.1186/gb-2008-9-2-r40

    Article  Google Scholar 

  • Huang XQ, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877. doi:10.1101/gr.9.9.868

    Article  CAS  Google Scholar 

  • Jansen M, Coors A, Stoks R, De Meester L (2011a) Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia. Ecotoxicology 20(3):543–551. doi:10.1007/s10646-011-0627-z

    Article  CAS  Google Scholar 

  • Jansen M, Stoks R, Coors A, van Doorslaer W, de Meester L (2011b) Collateral damage: rapid exposure-induced evolution of pesticide resistance leads to increased susceptibility to parasites. Evolution 65(9):2681–2691. doi:10.1111/j.1558-5646.2011.01331.x

    Article  Google Scholar 

  • Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G (2001) The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet 29(4):389–395. doi:10.1038/ng766

    Article  CAS  Google Scholar 

  • Kammenga JE, Herman MA, Ouborg NJ, Johnson L, Breitling R (2007) Microarray challenges in ecology. Trends Ecol Evol 22(5):273–279. doi:10.1016/j.tree.2007.01.013

    Article  Google Scholar 

  • Kerfoot WC, Sih A (1987) Predation, direct and indirect impacts on aquatic communities. University Press New England, Hannover

    Google Scholar 

  • Khanin R, Wit E (2005) Design for large time-course microarray experiments with two channels. Applied Bioinformatics 4(4):253–261

    Article  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363. doi:10.1111/j.1365-313X.2007.03052.x

    Article  CAS  Google Scholar 

  • Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:406–414

    Article  Google Scholar 

  • Knapen D, Vergauwen L, Laukens K, Blust R (2009) Best practices for hybridization design in two-colour microarray analysis. Trends Biotechnol 27(7):406–414. doi:10.1016/j.tibtech.2009.03.007

    Article  CAS  Google Scholar 

  • Labbé P, McTaggart SJ, Little TJ (2009) An ancient immunity gene duplication in Daphnia magna: RNA expression and sequence analysis of two nitric oxide synthase genes. Dev Comp Immunol 33(9):1000–1010. doi:10.1016/j.dci.2009.04.006

    Article  Google Scholar 

  • Lampert W (1987) Predictability in lake ecosystems: the role of biotic interactions. In: Schultze ED, Zwölfer H (eds) Ecological studies. Springer-Verlag, Berlin Heidelberg, pp 333–346

    Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D, Yang JD, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. P Natl Acad Sci USA 101(20):7663–7668. doi:10.1073/pnas.0307605101

    Article  CAS  Google Scholar 

  • Little TJ, Watt K, Ebert D (2006) Parasite-host specificity: experimental studies on the basis of parasite adaptation. Evolution 60(1):31–38. doi:10.1554/05-316.1

    Google Scholar 

  • Lotan R, Bar-On VG, Harel-Sharvit L, Duek L, Melamed D, Choder M (2005) The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev 19(24):3004–3016. doi:10.1101/gad.353205

    Article  CAS  Google Scholar 

  • Macháček J (1995) Inducibility of life history changes by fish kairomone in various developmental stages of Daphnia. J Plankton Res 17(7):7

    Google Scholar 

  • McTaggart SJ, Conlon C, Colbourne JK, Blaxter ML, Little TJ (2009) The components of the Daphnia pulex immune system as revealed by complete genome sequencing. Bmc Genomics 10:175. doi:10.1186/1471-2164-10-175

    Article  Google Scholar 

  • Miersch C, Doring F (2012) Sex differences in carbohydrate metabolism are linked to gene expression in Caenorhabditis elegans. PLoS ONE 7(9):e44748. doi:10.1371/journal.pone.0044748

    Article  CAS  Google Scholar 

  • Orsini L, Jansen M, Souche EL, Geldof S, De Meester L (2011) Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna. BMC Genomics 12:309. doi:10.1186/1471-2164-12-309

    Article  CAS  Google Scholar 

  • Pauwels K, Stoks R, De Meester L (2005) Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. J Evol Biol 18(4):867–872. doi:10.1111/j.1420-9101.2005.00890.x

    Article  CAS  Google Scholar 

  • Pauwels K, Stoks R, Decaestecker E, De Meester L (2007) Evolution of heat shock protein expression in a natural population of Daphnia magna. Am Nat 170(5):800–805. doi:10.1086/521956

    Article  Google Scholar 

  • Pauwels K, De Meester L, Decaestecker E, Stoks R (2011) Phenoloxidase but not lytic activity reflects resistance against Pasteuria ramosa in Daphnia magna. Biol Lett 7(1):156–159. doi:10.1098/rsbl.2010.0634

    Article  Google Scholar 

  • Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652. doi:10.1093/bioinformatics/btg034

    Article  CAS  Google Scholar 

  • Piao S, Song YL, Kim JH, Park SY, Park JW, Lee BL, Oh BH, Ha NC (2005) Crystal structure of a clip-domain serine protease and functional roles of the clip domains. EMBO J 24(24):4404–4414. doi:10.1038/sj.emboj.7600891

    Article  CAS  Google Scholar 

  • Pijanowska J, Kloc M (2004) Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis 38(2):81–86. doi:10.1002/gene.20000

    Article  CAS  Google Scholar 

  • Ranz JM, Machado CA (2006) Uncovering evolutionary patterns of gene expression using microarrays. Trends Ecol Evol 21(1):29–37. doi:10.1016/j.tree.2005.09.002

    Article  Google Scholar 

  • Rister J, Desplan C, Vasiliauskas D (2013) Establishing and maintaining gene expression patterns: insights from sensory receptor patterning. Development 140(3):493–503. doi:10.1242/dev.079095

    Article  CAS  Google Scholar 

  • Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23(20):2700–2707. doi:10.1093/bioinformatics/btm412

    Article  CAS  Google Scholar 

  • Rowe CL, Hopkins WA, Zehnder C, Congdon JD (2001) Metabolic costs incurred by crayfish (Procambarus acutus) in a trace element-polluted habitat: further evidence of similar responses among diverse taxonomic groups. Comp Biochem Physiol C Toxicol Pharmacol 129(3):275–283. doi:10.1016/s1532-0456(01)00204-6

    Article  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sclep G, Allemeersch J, Liechti R, De Meyer B, Beynon J, Bhalerao R, Moreau Y, Nietfeld W, Renou J-P, Reymond P, Kuiper MTR, Hilson P (2007) CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes. BMC Bioinformatics 8:400. doi:10.1186/1471-2105-8-400

    Article  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:e3

    Google Scholar 

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31(4):265–273. doi:10.1016/s1046-2023(03)00155-5

    Article  CAS  Google Scholar 

  • Smyth GK, Michaud J, Scott H (2005) The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9):9

    Article  Google Scholar 

  • Smyth GK, Ritchie ME, Thorne N, Wettenhall J, Shi W (2010) Limma: Linear Models for Microarray Data, User’s Guide. 10.1.1.182.2271 pdf edn

  • Soetaert A, Moens LN, Van der Ven K, Van Leemput K, Naudts B, Blust R, De Coen WM (2006) Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array. Comp Biochem Physiol C Toxicol Pharmacol 142(1–2):66–76. doi:10.1016/j.cbpc.2005.10.009

    Article  Google Scholar 

  • Soetaert A, van der Ven K, Moens LN, Vandenbrouck T, van Remortel P, De Coen WM (2007) Daphnia magna and ecotoxicogenomics: gene expression profiles of the anti-ecdysteroidal fungicide fenarimol using energy-, molting- and life stage-related cDNA libraries. Chemosphere 67(1):60–71. doi:10.1016/j.chemosphere.2006.09.076

    Article  CAS  Google Scholar 

  • Sorensen JG, Nielsen MM, Kruhoffer M, Justesen J, Loeschcke V (2005) Full genome gene expression analysis of the heat stress response, in Drosophila melanogaster. Cell Stress Chaperones 10(4):312–328. doi:10.1379/csc-128r1.1

    Article  CAS  Google Scholar 

  • Sterrenburg E, Turk R, Boer JM, van Ommen GB, den Dunnen JT (2002) A common reference for cDNA microarray hybridizations. Nucleic Acids Res 30(21):e116. doi:10.1093/nar/gnf115

    Article  Google Scholar 

  • Thomas MA, Klaper R (2004) Genomics for the ecological toolbox. Trends Ecol Evol 19(8):439–445. doi:10.1016/j.tree.2004.06.010

    Article  Google Scholar 

  • Tollrian R, Harvell CD (1999) The ecology and evolution of inducible defense mechanisms. Princeton University Press, New Jersey

    Google Scholar 

  • Van Straalen N (2003) Ecotoxicology becomes stress ecology. Environ Sci Technol 37(17):324A–330A

    Article  Google Scholar 

  • Vandenbrouck T, Soetaert A, van der Ven K, Blust R, De Coen W (2009) Nickel and binary metal mixture responses in Daphnia magna: molecular fingerprints and (sub)organismal effects. Aquat Toxicol 92(1):18–29. doi:10.1016/j.aquatox.2008.12.012

    Article  CAS  Google Scholar 

  • Walker CH, Hopkin SP, Sibly RM, Peakall DB (2006) Principles of ecotoxicology, 3rd edn. CRC press, New York, Taylor and Francis group

    Google Scholar 

  • Walz I, Schwack W (2008) Cutinase inhibition by means of insecticidal organophosphates and carbamates Part 2: screening of representative insecticides on cutinase activity. Eur Food Res Technol 226(5):1135–1143. doi:10.1007/s00217-007-0642-8

    Article  CAS  Google Scholar 

  • Watanabe H, Takahashi E, Nakamura Y, Oda S, Tatarazako N, Iguchi T (2007) Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem 26(4):669–676. doi:10.1897/06-075r.1

    Article  CAS  Google Scholar 

  • Yang L, Kemadjou JR, Zinsmeister C, Bauer M, Legradi J, Mueller F, Pankratz M, Jaekel J, Straehle U (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol 8(10):R227. doi:10.1186/gb-2007-8-10-r227

    Article  Google Scholar 

  • Yokoyama A, Ohtsu K, Iwafune T, Nagai T, Ishihara S, Kobara Y, Horio T, Endo S (2009) Sensitivity difference to insecticides of a riverine caddisfly, Cheumatopsyche brevilineata (Trichoptera: Hydropsychidae), depending on the larval stages and strains. J Pestic Sci 34(1):21–26. doi:10.1584/jpestics.G08-32

    Article  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CEW, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54. doi:10.1038/nature11413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claudia Buser for help during the exposures. A special thank also to John Colbourne for very useful suggestions to ameliorate the first drafts of the manuscript. Carbaryl analyses were done in the laboratorium of Prof. Dr. W.P. de Voogt (University of Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica—Instituut voor Biodiversiteit en Ecosystem Dynamica (IBED)). M.J. enjoyed a PhD fellowship of the Agency for Innovation by Science and Technology in Flanders (IWT, Flanders). This research was financially supported by projects GOA/08/06 and PF/2010/07 of the KULeuven Research Fund and project G.229.09 of the fund for scientific research FWO, Flanders. Our work benefits from and contributes to the “Daphnia Genomics Consortium”.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Jansen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1: General overview of the differentially expressed genes. Supplementary material 1 (DOCX 54 kb)

10646_2013_1072_MOESM2_ESM.docx

Figure S2: Heatmaps of identified GO classes in the fisher exact test of treatment-specific differentially expressed transcripts compared to the total set of transcript differentially expressed in any of the treatments. Supplementary material 2 (DOCX 14677 kb)

Figure S3: The experimental design. Supplementary material 3 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, M., Vergauwen, L., Vandenbrouck, T. et al. Gene expression profiling of three different stressors in the water flea Daphnia magna . Ecotoxicology 22, 900–914 (2013). https://doi.org/10.1007/s10646-013-1072-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1072-y

Keywords

Navigation