Skip to main content
Log in

Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The sensitivity of early life stages of the brown seaweed Saccharina japonica to six metals (Cd, Cu, Hg, Ni, Pb, Zn) and two waste-water samples were investigated and a new toxicity bioassay developed. The two endpoints used were spore germination and germ tube elongation with an exposure time of 24 h. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were darkness, pH 8, 35‰ and 15°C, respectively. The toxicity ranking of five metals was: Hg (EC50 of 41 and 42 μg l−1) > Cu (120 and 81 μg l−1) > Ni (2,009 and 1,360 μg l−1) > Zn (3,024 and 3,897 μg l−1) > Pb (4,760 and 4,429 μg l−1) > Cd (15,052 and 7,541 μg l−1) for germination and germ tube elongation, respectively. The sensitivities to Cd, Cu and Ni were greater in germ tube elongation than in germination process. When tested against two different waste-water samples (processed animal and printed circuit board waste-water) values of EC50 were between 21.29 and 32.02% for germination and between 5.33 and 8.98% for germ tube elongation. Despite differences in their chemical composition, the toxic effects of waste-water samples, as indicated by EC50 values, did not differ significantly for the same endpoints. The CV range for both germination and germ tube elongation was between 4.61 and 37.69%, indicating high levels of precision of the tests. The results compare favourably with those from more established test procedures employing micro- and macroalgae. The advantages and potential limitations of the bioassay for the assessment of anthropogenic impacts on coastal ecosystems and commercial cultivation areas in near-shore environments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrade L, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117ΓÇô125

    Article  CAS  Google Scholar 

  • Anderson BS, Hunt JW (1988) Bioassay methods for evaluating the toxicity of heavy metals, biocides and sewage effluent using microscopic stages of giant kelp Macrocystis pyrifera (Agardh): a preliminary report. Mar Environ Res 26:113–134

    Article  CAS  Google Scholar 

  • Anderson BS, Hunt JW, Turpen SL, Coulon AR, Martin M (1990) Copper toxicity to microscopic stages of giant kelp Macrocystis pyrifera: interpopulation comparisons and temporal variability. Mar Ecol Prog Ser 68:147–156

    Article  CAS  Google Scholar 

  • Anderson BS, Hunt JW, Piekarski W (1997) In: Well PG, Lee K, Blaise C (eds) Recent advances in toxicity test methods using kelp gametophytes. Microscale testing in aquatic toxicology: advances, techniques, and practice. CRC Press, Boca Raton, pp 255–268

  • ANZECC (2000) Australian and New Zealand guidelines for fresh and marine water quality. Aquatic ecosystems—rationale and background information. Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (Paper No. 4, vol 2, Chap. 8)

  • APHA, AWWA, WEF (1995) Standard methods for the examination of water and wastewater. American Public Association, American Water Works Association. Water Environmental Federation, Washington, pp 10–157

    Google Scholar 

  • Bidwell JR, Wheeler KW, Burridge TR (1998) Toxicant effects on zoospore stage of the marine macroalga Ecklonia radiata (Phaeophyta: Laminariales). Mar Ecol Prog Ser 163:259–265

    Article  CAS  Google Scholar 

  • Bisson S, Blaise C, Bermingham N (1989) Assessment of inorganic bioaccumulation potential of aqueous samples with two algal bioassays. In: Nriagu JO, Lakshminarayana JSS (eds) Aquatic toxicology and water quality management. Wiley, New York, pp 205–215

    Google Scholar 

  • Burridge TR, Bidwell J (2002) Review of the potential use of brown algal ecotoxicological assays in monitoring effluent discharge and pollution in Southern Australia. Mar Pollut Bull 45:140–147

    Article  CAS  Google Scholar 

  • Burridge TR, Portelli T, Ashton P (1996) Effects of sewage on germination of three marine brown algal macrophytes. Mar Freshw Res 47:1009–1014

    Article  CAS  Google Scholar 

  • Capodaglio G, Coale KH, Bruland KW (1990) Lead speciation in surface waters of the Eastern North Pacific. Mar Chem 29:221–233

    Article  CAS  Google Scholar 

  • Chung IK, Brinkhuis BH (1986) Copper effects in early stages of the kelp, Laminaria saccharina. Mar Pollut Bull 17:213–218

    Article  CAS  Google Scholar 

  • Cleuvers M, Altenburger R, Ratte HT (2002) Combination effect of light and toxicity in algal tests. J Environ Qual 31:539–547

    Article  CAS  Google Scholar 

  • Curtis MD, Klei HE, Cooney JD, Ertl R (1995) Reduction of effluent toxicity for a printed circuit board facility. Environ Prog 14:80–83

    Article  CAS  Google Scholar 

  • Eklund B (1993) A 7-day reproduction test with the marine red alga Ceramium strictum. In: Slooff W, de Kruijf H (eds) The science of the total environment. Proceedings of the 2nd European conference on ecotoxicology, supplement, Part 1. Elsevier Science Publishers BV, Amsterdam, pp 749–759

    Google Scholar 

  • Eklund B (2005) Development of a growth inhibition test with the marine and brackish water red alga Ceramium tenuicorne. Mar Pollut Bull 50:921–930

    Article  CAS  Google Scholar 

  • Eklund BT, Kautsky L (2003) Review on toxicity testing with marine macroalgae and the need for method standardization-exemplified with copper and phenol. Mar Pollut Bull 46:171–181

    Article  CAS  Google Scholar 

  • Environment Canada (1999) Guidance document on application and interpretation of single-species tests in environmental toxicology. EPS1/RM/34

  • Fontenot JP, Webb KE Jr, Libke KG, Buehler RJ (1971) Performance and health of ewes fed broiler litter. J Anim Sci 33:283

    Google Scholar 

  • Garman GD, Pillai MC, Goff LJ, Cherr GN (1994) Nuclear events during early development in gametophytes of Macrocystis pyrifera, and the temporal effects of a marine contaminant. Mar Biol 121:355–362

    Google Scholar 

  • Gartiser S, Hafner C, Hercher C, Kronenberger-Schäfer K, Paschke A (2010) Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry. Environ Sci Pollut Res 17:1149–1157

    Google Scholar 

  • Gibbon BC, Kropf DL (1991) pH gradients and cell polarity in Pelvetia zygotes. Protoplasma 163:43–50

    Article  Google Scholar 

  • Gledhill M, Nimmo M, Hill SJ (1997) The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J Phycol 33:2–11

    Article  CAS  Google Scholar 

  • Haglund K, Bjorklund M, Gunnare S, Sandberg A, Olander U, Pederśen M (1996) New method for toxicity assessment in marine and brackish environments using the macroalga Gracilaria tenuistipitata (Gracilariales, Rhodophyta). Hydrobiologia 326/327:317–325

    Article  Google Scholar 

  • Han T, Choi G-W (2005) A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta). Aquat Toxicol 75:202–212

    Article  CAS  Google Scholar 

  • Han T, Kain JM (1992) Blue light sensitivity of UV-irradiated young sporophytes of Laminaria hyperborea. J Exp Mar Biol Ecol 158:219–230

    Article  Google Scholar 

  • Han Y-S, Brown MT, Park GS, Han T (2007) Evaluating aquatic toxicity by visual inspection of thallus color in the green macroalga Ulva: testing a novel bioassay. Environ Sci Technol 41:3667–3671

    Article  CAS  Google Scholar 

  • Han T, Han Y-S, Park CY, Jun YS, Kwon MJ, Kang S-H, Brown MT (2008a) Spore release by the green alga Ulva: a quantitative assay to evaluate aquatic toxicants. Environ Pollut 153:699–705

    Article  CAS  Google Scholar 

  • Han T, Kang S-H, Park J-S, Lee H-K, Brown MT (2008b) Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat Toxicol 86:176–184

    Article  CAS  Google Scholar 

  • Han T, Kong J-A, Brown MT (2009a) Aquatic toxicity tests of Ulva pertusa Kjellman (Ulvales, Chlorophyta) using spore germination and gametophyte growth. Eur J Phycol 44:357–363

    Article  CAS  Google Scholar 

  • Han Y-S, Kumar AS, Han T (2009b) Comparison of metal toxicity bioassays based on inhibition of sporulation and spore release in Ulva pertusa. Toxicol Environ Health Sci 1:24–31

    Article  Google Scholar 

  • Hooten RL, Carr RS (1998) Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores. Environ Toxicol Chem 17:932–940

    CAS  Google Scholar 

  • Hopkin R, Kain JM (1978) The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuar Coast Mar Sci 7:531–553

    Article  CAS  Google Scholar 

  • Horvatić J, Peršić V (2007) The effect of Ni2+, Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: Microplate Growth Inhibition Test. Bull Environ Contam Toxicol 79:494–498

    Article  Google Scholar 

  • Huovinen PS, Oikari AOJ, Soimasuo MR, Cherr GN (2000) Impact of UV radiation on the early development of the giant kelp (Macrocystis pyrifera) gametophytes. Photochem Photobiol 72:308–313

    Article  CAS  Google Scholar 

  • Jennings JR (1979) The effect of cadmium and lead on the growth of two species of marine phytoplankton with particular reference to the development of tolerance. J Plankton Res 1:121–136

    Article  CAS  Google Scholar 

  • Karsten U (2007) Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycol Res 55:257–262

    Article  Google Scholar 

  • Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512

    Article  CAS  Google Scholar 

  • Lee Y, Kang S (2001) A catalogue of the seaweeds in Korea. Cheju National University Press, Jeju

    Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lüning K (1980) Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol 16:1–15

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. Wiley-Interscience, New York

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    Article  CAS  Google Scholar 

  • Markham JW, Kremefi BP, Sperling KR (1980) Effects of cadmium on Laminaria saccharina in culture. Mar Ecol Prog Ser 3:31–39

    Article  CAS  Google Scholar 

  • Myers HH, Duba S, Gunthorpe L, Allinson G (2006) Assessing the performance of Hormosira banksii (Turner) Desicaine germination and growth assay using four reference toxicants. Ecotoxicol Environ Saf 64:304–311

    Article  CAS  Google Scholar 

  • Nielsen HD, Brownlee C, Coelho SM, Brown MT (2003) Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol 160:157–165

    Article  CAS  Google Scholar 

  • Ogata T, Ishimaru T, Kodama M (1987) Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis. Mar Biol 95:217–220

    Article  CAS  Google Scholar 

  • Ott FD (1965) Synthetic media and techniques for the xenic culture of marine algae and flagellates. VA J Sci 16:205–218

    CAS  Google Scholar 

  • Pillai MC, Baldwin JD, Cherr GN (1992) Early development in an algal gametophyte: role of cytoskeleton in germination and nuclear translocation. Protoplasma 170:34–45

    Article  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Reed RH, Moffat L (1983) Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev. J Exp Mar Biol Ecol 69:85–103

    Article  CAS  Google Scholar 

  • Rodrigues AG, Mårdh PA, Pina-Vaz C, Martinez-de-Oliveira J, Fonseca AF (1999) Germ tube formation changes surface hydrophobicity of Candida cells. Infect Dis Obstet Gynecol 7:222–226

    Article  CAS  Google Scholar 

  • Rzewuska E, Wernikowska E (1974) Reserach on the influence of heavy metals on the development of Scenedesmus quadricauda (Furp) Breb. 1. Mercury. Arch Hydrobiol 21:109–117

    CAS  Google Scholar 

  • Sahoo D, Yarish C (2005) Mariculture of seaweeds and their utilization. In: Andersen R (ed) Phycological methods: algal culturing techniques. Academic Press, Elsevier, Amsterdam, pp 219–237

    Chapter  Google Scholar 

  • Santelices B, Aedo D, Hoffmann A (2002) Banks of microscopic forms and survival to darkness of propagules and microscopic stages of macroalgae. Rev Chil Hist Nat 75:547–555

    Article  Google Scholar 

  • Schoenwaelder MEA, Clayton MN (1999) The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia 38:161–166

    Article  Google Scholar 

  • Seery CR, Gunthorpe L, Ralph PJ (2006) Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays. Environ Pollut 140:43–51

    Article  CAS  Google Scholar 

  • Selivanova ON, Zhigadlova GG, Hansen GI (2007) Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the far-eastern seas of Russia on the basis of molecular–phylogenetic data. Russ J Mar Biol 33:278–289

    Article  Google Scholar 

  • Stewart E, Gow NAR, Bowen DV (1988) Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134:1079–1087

    CAS  Google Scholar 

  • Strömgren T (1979) The effect of zinc on the increase in length of five intertidal fucales. J Exp Mar Biol Ecol 40:95–102

    Article  Google Scholar 

  • Strömgren T (1980) The effect of lead, cadmium, and mercury on the increase in length of five intertidal fucales. J Exp Mar Biol Ecol 43:107–119

    Article  Google Scholar 

  • Thursby GB, Steele RL (1986) Comparison of short- and long-term sexual reproduction tests with the marine red alga Champia parvula. Environ Toxicol Chem 5:1013–1018

    CAS  Google Scholar 

  • Torres E, Cid A, Herrero C, Abalde J (2000) Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water Air Soil Pollut 117:1–14

    Article  CAS  Google Scholar 

  • Verlaque M (2001) Checklist of the macroalgae of Thau Lagoon (Hérault, France), a hot spot of marine species introduction in Europe. Oceanol Acta 24:29–49

    Article  Google Scholar 

  • Wells ML, Kozelka PB, Bruland KW (1998) The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI. Mar Chem 62:203–217

    Article  CAS  Google Scholar 

  • Ye N-H, Wang G-C, Tseng C-K (2005) Effect of heavy metals (Cd, Cu) on the gametophytes of Laminaria japonica Aresch. J Integr Plant Biol 47:942–951

    Article  CAS  Google Scholar 

  • Ytreberg E, Karlsson J, Eklund B (2010) Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci Total Environ 408:2459–2466

    Article  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

Financial support to this study was given from the Korea Ministry for Food, Agriculture, Forestry and Fisheries and from the Korea Ministry of Land, Transport and Maritime Affairs. SDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, T., Kong, JA., Kang, HG. et al. Sensitivity of spore germination and germ tube elongation of Saccharina japonica to metal exposure. Ecotoxicology 20, 2056–2068 (2011). https://doi.org/10.1007/s10646-011-0748-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0748-4

Keywords

Navigation