Skip to main content

Advertisement

Log in

Do genetically modified plants impact arbuscular mycorrhizal fungi?

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The development and use of genetically modified plants (GMPs), as well as their ecological risks have been a topic of considerable public debate since they were first released in 1996. To date, no consistent conclusions have been drawn dealing with ecological risks on soil microorganisms of GMPs for the present incompatible empirical data. Arbuscular mycorrhizal fungi (AMF), important in regulating aboveground and underground processes in ecosystems, are the most crucial soil microbial community worthy of being monitored in ecological risks assessment of GMPs for their sensitivity to environmental alterations (plant, soil, climatic factor etc.). Based on current data, we suggest that there is a temporal–spatial relevance between expression and rhizosphere secretion of anti-disease and insecticidal proteins (e.g., Bt-Bacillus thuringiensis toxins) in and outer roots, and AMF intraradical and extraradical growth and development. Therefore, taking Bt transgenic plants (BTPs) for example, Bt insecticidal proteins constitutive expression and rhizosphere release during cultivation of BTPs may damage some critical steps of the AMF symbiotic development. More important, these processes of BTPs coincide with the entire life cycle of AMF annually, which may impact the diversity of AMF after long-term cultivation period. It is proposed that interactions between GMPs and AMF should be preferentially studied as an indicator for ecological impacts of GMPs on soil microbial communities. In this review, advances in impacts of GMPs on AMF and the effect mechanisms were summarized, highlighting the possible ecological implications of interactions between GMPs and AMF in soil ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GMPs:

Genetically modified plants

AMF:

Arbuscular mycorrhizal fungi

Bt:

Bacillus thuringiensis

BTPs:

Bt transgenic plants

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Article  Google Scholar 

  • Angle JS (1994) Release of transgenic plants: biodiversity and population-level considerations. Mol Ecol 3:45–50

    Article  Google Scholar 

  • Blackwood CB, Buyer JS (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual 33:832–836

    CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2006) Global impact of biotech crops: socio-economic and environmental effects in the first 10 years of commercial use. Ag Bioforum 3:139–151

    Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Google Scholar 

  • Brusetti L, Fracia P, Bertolini C, Pagliuca A, Borin S, Sorlini C, Abruzzese A, Sacchi G, Viti C, Giovannetti L, Giuntini E, Bazzicalupo M, Daffonchio D (2004) Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non-transgenic counterpart. Plant Soil 218:137–144

    Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Fabiani A, Landi S, Santomassimo F, Pietrangeli R, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizo spheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  CAS  Google Scholar 

  • Crecchio C, Stotzky G (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. Kurstaki and subsp. Tenebrionis adsorbed and bound on pure and soil clays. Appl Environ Microbiol 61:1786–1790

    Google Scholar 

  • de Vaufleury A, Kramarz PE, Binet P, Cortet J, Caul S, Andersen MN, Plumey E, Coeurdassier M, Krogh PH (2007) Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia 51:185–194

    Article  CAS  Google Scholar 

  • Devarc MH, Thies JE (2004) Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community: biomass, activity, and diversity. J Environ Qual 33:837–843

    Article  Google Scholar 

  • Dong ZQ, Zhao M, Shu WH, Zhang BM, Hao HJ (2006) The subcellular localization of the Bt crystal protein in transgenic Bt cotton cell. Acta Agron Sin 32:1924–1926 in China

    CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69:7310–7318

    Article  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815

    CAS  Google Scholar 

  • Ferreira LHPL, Molina JC, Brasil C, Andrade G (2003) Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganisms. Plant Soil 256:161–168

    Article  CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AMR (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19

    Article  CAS  Google Scholar 

  • Firbank L, Lonsdal M, Poppy G (2005) Reassessing the environmental risks of GM crops. Nat Biotechnol 23:1475–1476

    Article  CAS  Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082

    Article  CAS  Google Scholar 

  • Fontanet X, Estaun V, Camprubi A, Calvet C (1998) Fungicides added to potting substrate affect mycorrhizal symbiosis between a peach–almond rootstock and Glomus sp. Hortscience 33:1217–1219

    CAS  Google Scholar 

  • Gai JP, Christie P, Feng G, Li XL (2006) Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza 16:229–239

    Article  CAS  Google Scholar 

  • Gavito ME, Schweiger P, Jakobsen I (2003) P uptake arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enriched. Glob Chang Biol 9:106–116

    Article  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of Arbuscular Mycorrhizas. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology. agriculture and food production, vol 2. Elsevier Science, Amsterdam, pp 275–310

    Google Scholar 

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Biol Forum 98:393–418

    Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A, Sausse C, Lacroix B, Krogh PH (2005) A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CryIAb toxin. Plant Soil 275:135–146

    Article  CAS  Google Scholar 

  • Hails RS (2000) Genetically modified plants—the debate continues. Trends Ecol Evol 15:14–18

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431

    Article  CAS  Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1998) Toxicity of Bacillus thuringensis Cry1Ab toxin to the predator Chrysoperla carnea. Environ Entomol 27:1255–1263

    CAS  Google Scholar 

  • Huang JK, Rozelle S, Pray C, Wang QF (2002) Plant biotechnology in China. Nature 295:674–676

    CAS  Google Scholar 

  • Huang JK, Hu FR, Pray C, Qiao FB, Rozelle S (2003) Biotechnology as an alternative to chemical pesticides: a case study of Bt cotton in China. Agric Econ 29:55–67

    Article  Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586

    Article  CAS  Google Scholar 

  • James C (2008) Global status of commercialized Biotech/GM crops 2008, ISAAA Briefs No. 39. ISAAA, Ithaca, NY

    Google Scholar 

  • Jepson PC, Croft BA, Pratt GE (1994) Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plants. Mol Ecol 3:81–89

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  Google Scholar 

  • Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stresses. In: Bethenfalvay GJ, Linderman RG, Madison EI (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication no. 54. pp 71–99

  • Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660

    Article  CAS  Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458

    Article  CAS  Google Scholar 

  • Knox OGG, Gupta VVSR, Nehl DB, Stiller WN (2007) Constitutive expression of cry proteins in roots and border cells of transgenic cotton. Euphytica 154:83–90

    Article  CAS  Google Scholar 

  • Knox OGG, Nehl DB, Mor T, Roberts GN, Gupta VVSR (2008) Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots. Field Crops Res 109:57–60

    Article  Google Scholar 

  • Li XL, Geoege E, Marschner H (1991a) Extension of the phosphorus depletion zone in VAM white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Li XL, George E, Marschner H (1991b) Acquisition of phosphorus and copper by VAM hyphae and root to shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Liu WK (2008) N, P contribution and soil adaptability of four arbuscular mycorrhizal fungi. Acta Agric Scand B Soil and Plant Sci 58:285–288

    CAS  Google Scholar 

  • Liu WK (2009) Effects of Bt transgenic crops on soil ecosystems: a review of a 10 years research in China. Front Agric China 3:190–198

    Article  Google Scholar 

  • Liu WK, Du LF (2008) Interactions between Bt transgenic crops and arbuscular mycorrhizal fungi: a new urgent soil ecology issue in agro-ecosystems. Acta Agric Scand B Soil and Plant Sci 58:187–192

    Google Scholar 

  • Liu RJ, Wang FY (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza 13:123–127

    Article  CAS  Google Scholar 

  • Liu B, Zeng Q, Yan FM, Xu HG, Xu CR (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13

    Article  CAS  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214

    Article  CAS  Google Scholar 

  • Medina MJH, Gagnon H, Piche Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998

    Article  CAS  Google Scholar 

  • Miller RM (1993) Nontarget and ecological effects of transgenically altered disease resistance in crops-possible effects on the mycorrhizal symbiosis. Mol Ecol 2:327–335

    Article  Google Scholar 

  • Morra MJ (1994) Assessing the impact of transgenic plant products on soil organisms. Mol Ecol 3:53–55

    Article  Google Scholar 

  • Motavalli PP, Kremer RJ, Fang M, Means NE (2004) Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. J Environ Qual 33:816–824

    Article  CAS  Google Scholar 

  • Newhouse AE, Schrodt F, Liang HY, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987

    Article  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multifunctionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annu Rev Entomol 50:271–292

    Article  CAS  Google Scholar 

  • Pietramellara G, Ceccherini MT, Ascher J, Nannipieri P (2006) Persistence of transgenic and not transgenic extracellular DNA in soil and bacterial transformation. Biol Forum 99:37–68

    Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367

    Article  CAS  Google Scholar 

  • Read DJ (1998) The ties that bind. Nature 396:22–23

    Article  CAS  Google Scholar 

  • Ren X (2006) Effect of Bt transgenic rice (KMD) on soil bacterial community and rhizosphere AM fungi. Master degree thesis of Zhejiang University. HangZhou, Chin

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  Google Scholar 

  • Rui YK, Yi GX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li QX (2005) Changes of Bt toxin in rhizosphere of transgenic Bt-cotton and its influence on soil functional bacteria. World J Microbiol Biotechnol 21:1279–1284

    Article  CAS  Google Scholar 

  • Rui YK, Yi GX, Guo J, Guo X, Luo YB, Wang BM, Li ZH (2006) Transgenic cotton could safely be grown since CpTI toxin rapidly degrades in the rhizosphere soil. Acta Agric Scand B Soil and Plant Sci 57:122–125

    Google Scholar 

  • Sarkar B, Patra AK, Purakayastha TJ, Megharaj M (2009) Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment. Environ Monit Assess 156:595–604

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001) Bt toxin uptake from soil by plants. Nat Biotechnol 19:199

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2003) Fate and effects in soil of insecticidal toxins from Bacillus thuringiensis in transgenic plants. In: Collection of biosafety reviews, vol 1. international centre for genetic engineering and biotechnology, Trieste, pp 7–83

  • Selosse MA, Baudoin E, Vanderkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. Cr Acad Sci III 327:639–648

    Google Scholar 

  • Shen RF, Cai H, Gong WH (2006) Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant Soil 285:149–159

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Snow A, Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. Bioscience 47:86–96

    Article  Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    CAS  Google Scholar 

  • Sun CX, Chen LJ, Wu ZJ, Zhou LK (2007) Soil persistence of Bacillus thuringiensis (Bt) toxin from transgenic Bt cotton tissues and its effect on soil enzyme activities. Biol Fertil Soils 43:617–620

    Article  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–49

    Article  Google Scholar 

  • Tahiri-Alaoui A, Grison R, Gianinazzi-Pearson VT, Gianinazzi AS (1994) The impact of the constitutive expression of chitinases in roots of transgenic tobacco on arbuscular mycorrhizal fungi. In: Abstract 406 of the 7th international symposium on molecular plant–microbe interactions, Edinburgh, 26 June–1 July, 1994

  • Tapp H, Stotzky G (1995) Insecticidal activity of the toxin from Bacillus thuringiensis subsp. Kurstaki and subsp. Tenebrionis bound to humic acids from soil. Soil Biol Biochem 30:463–470

    Google Scholar 

  • Turrini A, Sbrana C, Nuti MP (2004a) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Ruffini CM, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Velkov V, Medvinsky A, Sokolov M, Marchenko A (2005) Will transgenic plants adversely affect the environment? J Biosci 30:515–548

    Article  CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant Microbe Interact 6:261–264

    CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by vesicular–arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    CAS  Google Scholar 

  • Wang HY, Ye QF, Wang W, Wu LC, Wu WX (2006) Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Environ Pollut 143:449–455

    Article  CAS  Google Scholar 

  • Watrud LS, Seidler RJ, Huang PM, Adriano DC, Logan TJ, Checkai RT (1998) Non-target ecological effects of plant, microbial and chemical introductions to terrestrial system. In: Soil chemistry and ecosystem health. Soil Science Society of America, Madison, Wisconsin, pp 313–340

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and beneficial engineered plants. Science 290:2088–2093

    Article  CAS  Google Scholar 

  • Wu WX, Ye QF, Min H (2004a) Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil. Eur J Soil Biol 40:15–22

    Article  Google Scholar 

  • Wu WX, Ye QF, Min H, Duan XJ, Jin WM (2004b) Bt transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem 36:289–295

    Article  CAS  Google Scholar 

  • Yang YF, Yuan HX, Liu YL, Xu XP, Li BJ (2002) Research on root microorganism community of “RCH” transgenic rice. Chin J Agric Econ 10:29–31 in China

    Google Scholar 

  • Zhang MD, Yang WD (2008) Effect of transgenic Bt cotton planting on biological characteristics and nutrient content in rhizosphere soil. Plant Nutr Fertilizer Sci 14:162–168 in China

    CAS  Google Scholar 

Download references

Acknowledgments

I want to thank the financial support of the Open Fund of Key Laboratory of Crop Nutrition and Fertilization (2009), Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W. Do genetically modified plants impact arbuscular mycorrhizal fungi?. Ecotoxicology 19, 229–238 (2010). https://doi.org/10.1007/s10646-009-0423-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0423-1

Keywords

Navigation