Skip to main content

Advertisement

Log in

Metallothionein mRNA Expression and Cadmium Tolerance in Metal-stressed and Reference Populations of the Springtail Orchesella cincta

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Metal contamination in soil ecosystems is a permanent and often strong selection pressure. The present study investigates metal tolerance in 17 Orchesella cincta (Collembola) populations from metal-contaminated and reference sites, and combines analyses at the phenotypic and molecular level. Metal tolerance was phenotypically assayed by measuring survival times of laboratory cultures during exposure to cadmium. Comparisons of survival curves showed that five out of eight metal-stressed populations tested evolved increased cadmium tolerance (Stolberg, Plombieres, Hoboken, Hygum and Gusum). In addition, the role of the metallothionein (MT) gene in cadmium tolerance of O. cincta was studied by means of quantitative RT-PCR. The constitutive and Cd-induced MT mRNA expression of the laboratory cultures was measured. Results show that the mean constitutive MT mRNA expression of populations from polluted sites was significantly higher than of populations from reference sites. However, no correlation between MT mRNA expression levels after laboratory exposure to cadmium and field cadmium concentrations was observed. Furthermore, no relation between survival rate during exposure to cadmium and MT mRNA expression was detected. Our results suggest that constitutive MT mRNA expression plays a role in early protection against cadmium toxicity, and indicate that mechanisms other then MT up-regulation are involved in tolerance to prolonged exposure to cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Begon B., Harper J.L., Townsend C.R., (1996) Ecology: individuals, populations and communities, Blackwell Science Ltd., Oxford

    Google Scholar 

  • Bengtsson G., Rundgren S., (1984). Ground-living invertebrates in metal-polluted forest soils Ambio 13: 29–33

    CAS  Google Scholar 

  • Bengtsson G., Rundgren S., Sjögren M., (1994) Modelling dispersal distances in a soil gradient: the influence of metal resistance, competition, and experience Oikos 71: 13–23

    Article  Google Scholar 

  • Bryan G.W., Hummerstone L.G., (1971). Adaptation of the polychaete Nereis diversicolor to estuarine sediments containing high concentrations of heavy metals I. General observations and adaptation to copper J. Mar. Biol. Assoc. U.K. 51: 845–63

    Article  CAS  Google Scholar 

  • Daborn P.J., Yen J.L., Bogwitz M.R., Le Goff G., Feil E., Jeffers S., Tijet N., Perry T., Heckel D., Batterham P., Feyereisen R., Wilson T.G., ffrench-Constant R.H., (2002). A single P450 allele associated with insecticide resistance in Drosophila Science 297: 2253–6

    Article  CAS  Google Scholar 

  • Ferrara R., Mazzolai B., Edner H., Svanberg S., Wallinder E., (1998). Atmospheric mercury sources in the Mt. Amiata area, Italy. Sci. Total Environ. 13–23

  • Filser J., Wittmann R., Lang A., (2000). Response types in Collembola towards copper in the microenvironment Environ. Pollut. 107: 71–8

    Article  PubMed  CAS  Google Scholar 

  • Fox G.A., (1995). Tinkering with the tinkerer: pollution versus evolution Environ. Health Persp. 103(suppl 4): 93–100

    Article  Google Scholar 

  • Gillet S., Ponge J.-F., (2003). Changes in species assemblages and diets of Collembola along a gradient of metal pollution Appl. Soil Ecol. 22: 127–38

    Article  Google Scholar 

  • Henderson G.F., (1955). Test with acaricide against the brown wheat mite J. Econ. Entomol. 48: 157–60

    CAS  Google Scholar 

  • Hensbergen P.J., (1999). Methallothionein in Orchesella cincta Thesis Vrije Universiteit, Amsterdam, pp. 111

  • Hensbergen P.J., van Velzen M. J.M., Nugroho R.A., Donker M.H., van Straalen N.M., (2000). Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure Comp. Biochem. Physiol. 125c: 17–24

    CAS  Google Scholar 

  • Hopkin S.P., (1997). Biology of the springtails (Insecta: Collembola). Oxford University Press, Inc., New York

    Google Scholar 

  • Hopkin S.P., Jones D.T., Dietrich D., (1993). The isopod Porcellio scaber as a monitor of the bioavailability of metals in terrestrial ecosystems: towards a global “woodlouse watch” scheme. Sci. Total Environ. (suppl 1996) 357–65

    Google Scholar 

  • Janssens E., Dauwe T., Bervoets L., Eens M., (2001). Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient Environ. Toxicol. Chem. 20: 2815–20

    Article  PubMed  CAS  Google Scholar 

  • Jones K.C., Watts S.A., Harrison A.F., Dighton J., (1988). The distribution of metals in the forest floor of aged conifer stands at a plantation in Northern England Environ. Pollut. 51: 31–47

    Article  PubMed  CAS  Google Scholar 

  • Joosse E.N.G., Testerink G.J., (1977). Control of numbers in Collembola Ecol. Bull. 25: 475–78

    Google Scholar 

  • Joosse E.N.G., Verhoef S.C., (1983). Lead tolerance in Collembola Pedobiologia 25: 11–8

    CAS  Google Scholar 

  • Klerks P.L., Leberg P.L., Lance R.F., McMillin D.J., Means J.C., (1997). Lack of development of pollutant-resistance or genetic differentiation in darter gobies (Gobionellus boleosoma) inhabiting a produced-water discharge site Mar. Environ. Res. 44: 377–95

    Article  CAS  Google Scholar 

  • Klerks P.L., Weis J.S., (1987). Genetic adaptation to heavy metals in aquatic organisms: a review Environ. Poll. 45: 173–205

    Article  CAS  Google Scholar 

  • Köhler H.-R., Eckwert H., Triebskorn R., Bengtsson G., (1999). Interaction between tolerance and 70 kDa stress protein (hsp70) induction in collembolan populations exposed to long-term metal pollution Appl. Soil Ecol. 12: 43–52

    Article  Google Scholar 

  • Korsloot A., Van Gestel C.A.M., Van Straalen N.M., (2004) Environmental Stress and Cellular Response in Arthropods, Boca Raton, London

    Google Scholar 

  • Lange B.W., Langley C.H., Stephan W., (1990). Molecular evolution of the Drosophila metallothionein genes Genetics 126: 921–32

    PubMed  CAS  Google Scholar 

  • Liu N., Scott J.G., (1998). Increased transcription of CYP6D1 causes cytochrome P450 mediated insecticide resistance in house fly Insect Biochem. Molec. Biol. 28: 531–5

    Article  CAS  Google Scholar 

  • Livak K.J., (2001). ABI Prism 7700 Sequence detection system. User bulletin 2. PE Appl. Biosyst. 1–36

  • Maroni G., Wise J., Young J.E., Otto E., (1987). Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster Genetics 117: 739–44

    PubMed  CAS  Google Scholar 

  • Nachman M.W., Hoekstra H.E., D’Agostino S.L., (2003). The genetic baais of adaptive melanism in pocket mice Proc. Nat. Acad. Sci. USA 100: 5268–73

    Article  PubMed  CAS  Google Scholar 

  • Posthuma L., (1990). Genetic differentiation between populations of Orchesella cincta (Collembola) from heavy metal contaminated sites J. Appl. Ecol. 27: 609–22

    Article  Google Scholar 

  • Posthuma L., Hogervorst R.F., Joosse E.N.G., Van Straalen N.M., (1993). Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail Orchesella cincta (L.) Evolution 47: 619–31

    Article  Google Scholar 

  • Posthuma L., Hogervorst R.F., Van Straalen N.M., (1992). Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Arch. Environ. Con. Toxicol. 22: 146–56

    Article  CAS  Google Scholar 

  • Posthuma L., van Straalen N.M., (1993). Heavy metal adaptation in terrestrial invertebrates: a review of occurence, genetics, physiology and ecological consequences Comp. Biochem. Physiol 106c: 11–38

    CAS  Google Scholar 

  • Posthuma L., Verweij R.A., Widianarko B., Zonneveld C., (1993). Life-history patterns in metal-adapted Collembola Oikos 67: 235–49

    Article  Google Scholar 

  • Rabitsch W.B., (1995). Metal accumulation in arthropods near a lead/zinc smelter in Arnoldstein, Austria Environ. Pollut. 90: 221–37

    Article  PubMed  CAS  Google Scholar 

  • Scott-Fordsmand J.J., Krogh P.H., Weeks J.M., (2000). Responses of Folsomia fimetaria (Collembola : Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment Environ. Toxicol. Chem. 19: 1297–303

    Article  CAS  Google Scholar 

  • Spurgeon D.J., Hopkin S.P., (1999). Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works J. Appl. Ecol. 36: 173–83

    Article  CAS  Google Scholar 

  • Stam E., (1997). Temperature responses and physiological time: A comparison of three European populations of Orchesella cincta Pedobiologia 41: 88–93

    Google Scholar 

  • Sterenborg I., 2003 Molecular physiology of metal tolerance in Orchesella cincta. Thesis Vrije Universiteit, Amsterdam, pp. 107

  • Sterenborg I., Roelofs D., (2003). Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression Insect Biochem. Mol. Biol. 33: 741–47

    Article  PubMed  CAS  Google Scholar 

  • Van Straalen N.M., Burghouts T.B.A., Doornhof M.J., Groot G.M., Janssen M.P.M., Joosse E.N.G., Van Meerendonk J.H., Theeuwen J.P.J.J., Verhoef H.A., Zoomer H.R., (1987). Efficiency of lead and cadmium excretion in populations of Orchesella cincta (Collembola) from various contaminated forest soils J. Appl. Ecology 24: 953–68

    Article  Google Scholar 

  • Van Straalen N.M., Schobben J.H.M., De Goede R.G.M., (1989). Population consequences of cadmium toxicity in soil microarthropods Ecotoxicol. Environ. Safe. 17: 190–204

    Article  Google Scholar 

  • Vegter J.J., (1983). Food and habitat specialization in coexisting springtails (Collembola, Entomobryidae) Pedobiologia 25: 253–62

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank C.A.M. van Gestel for critical advice on earlier versions of the manuscript. The authors further would like to thank J. Mariën, S.C. Verhoef, V. J.W. Janssen, E.H.P. Franssen, G. Bengtsson, J. Scott-Fordsmand, G. Spinsanti, F. Frati, T. Skalski, H.-R Koehler, S.P. Hopkin and R. Dallinger for assistance and/or guidance in collecting the animals and J. Mariën for assistance in the metal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn J.T.N. Timmermans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmermans, M.J., Ellers, J., Roelofs, D. et al. Metallothionein mRNA Expression and Cadmium Tolerance in Metal-stressed and Reference Populations of the Springtail Orchesella cincta . Ecotoxicology 14, 727–739 (2005). https://doi.org/10.1007/s10646-005-0020-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-005-0020-x

Keywords

Navigation