Skip to main content

Advertisement

Log in

The influences of ChatGPT on undergraduate students’ demonstrated and perceived interdisciplinary learning

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

The significance of interdisciplinary learning has been well-recognized by higher education institutions. However, when teaching interdisciplinary learning to junior undergraduate students, their limited disciplinary knowledge and underrepresentation of students from some disciplines can hinder their learning performance. ChatGPT’s ability to engage in human-like conversations and massive knowledge grounded in different disciplines holds promise in enriching undergraduate students with the disciplinary knowledge that they lack. In this exploratory study, we engaged 130 undergraduate students in a three-condition quasi-experiment to examine how ChatGPT influences their demonstrated and perceived interdisciplinary learning quality, as measured by their online posts and surveys, respectively. The content analysis results show that overall, students’ online posts could be coded into four interdisciplinary learning dimensions: diversity, disciplinary grounding, cognitive advancement, and integration. The means of the first three dimensions were close to the middle level (ranging from 0.708 to 0.897, and the middle level is 1), whereas the mean score of integration was relatively small (i.e., 0.229). Students under the ChatGPT condition demonstrated improved disciplinary grounding. Regarding their perceived interdisciplinary learning quality, we did not find significant differences across the three conditions in the pre- or post-surveys. The findings underscore ChatGPT’s ability to enhance students’ disciplinary grounding and the significance of further fostering their integration skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Because of confidentiality agreements and ethical concerns, the data used in this study will not be made public. These data will be made available to other researchers on a case-by-case basis.

References

  • Alberta Education (2015). Interdisciplinary Learning. https://www.learnalberta.ca/content/kes/pdf/or_ws_tea_elem_05_interdis.pdf

  • Biggs, J. B., & Collis, K. F. (1982). The psychological structure of Creative writing. Australian Journal of Education, 26(1), 59–70. https://doi.org/10.1177/000494418202600104

    Article  Google Scholar 

  • Bitzenbauer, P. (2023). ChatGPT in physics education: A pilot study on easy-to-implement activities. Contemporary Educational Technology, 15(3), ep430. https://doi.org/10.30935/cedtech/13176

    Article  Google Scholar 

  • Boeve-de Pauw, J., Van Hoof, J., & Van Petegem, P. (2019). Effective field trips in nature: The interplay between novelty and learning. Journal of Biological Education, 53(1), 21–33. https://doi.org/10.1080/00219266.2017.1418760

    Article  Google Scholar 

  • Boix-Mansilla, V. (2010). Learning to Synthesize: The development of Interdisciplinary understanding. In R. Frodeman, J. T. Klein, C. Mitcham, & J. B. Holbrook (Eds.), The Oxford Handbook of Interdisciplinarity (pp. 288–306). Oxford University Press.

  • Boix-Mansilla, V., & Duraising, E. D. (2007). Targeted Assessment of Students’ Interdisciplinary Work: An empirically grounded Framework proposed. The Journal of Higher Education, 78(2), 215–237. https://doi.org/10.1080/00221546.2007.11780874

    Article  Google Scholar 

  • Boix-Mansilla, V., Duraisingh, E. D., Wolfe, C. R., & Haynes, C. (2009). Targeted Assessment Rubric: An empirically grounded Rubric for Interdisciplinary writing. The Journal of Higher Education, 80(3), 334–353. https://doi.org/10.1080/00221546.2009.11779016

    Article  Google Scholar 

  • Bordt, S., & von Luxburg, U. (2023). ChatGPT Participates in a Computer Science Exam (arXiv:2303.09461). arXiv. https://doi.org/10.48550/arXiv.2303.09461

  • Brassler, M., & Dettmers, J. (2017). How to enhance interdisciplinary competence—interdisciplinary problem-based learning versus Interdisciplinary Project-based learning. Interdisciplinary Journal of Problem-Based Learning, 11(2). https://doi.org/10.7771/1541-5015.1686

  • Broadbent, S., & Gallotti, M. (2015). Collective intelligence: How does it emerge. NESTA.

  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.

  • Choi, J. H., Hickman, K. E., Monahan, A., & Schwarcz, D. (2023). ChatGPT Goes to Law School (SSRN Scholarly Paper 4335905). https://doi.org/10.2139/ssrn.4335905

  • Clark, T. M. (2023). Investigating the Use of an Artificial Intelligence Chatbot with General Chemistry exam questions. Journal of Chemical Education, 100(5), 1905–1916. https://doi.org/10.1021/acs.jchemed.3c00027

    Article  Google Scholar 

  • Cole, M. L., Cox, J. D., & Stavros, J. M. (2018). SOAR as a mediator of the Relationship between Emotional intelligence and collaboration among professionals working in teams: Implications for entrepreneurial teams. SAGE Open, 8(2), 2158244018779109. https://doi.org/10.1177/2158244018779109

    Article  Google Scholar 

  • Cooper, A. (1999). The Inmates are Running the Asylum. In U. Arend, E. Eberleh, & K. Pitschke (Eds.), Software-Ergonomie ’99: Design von Informationswelten (pp. 17–17). Vieweg + Teubner Verlag. https://doi.org/10.1007/978-3-322-99786-9_1

  • Cooper, G. (2023). Examining Science Education in ChatGPT: An exploratory study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444–452. https://doi.org/10.1007/s10956-023-10039-y

    Article  Google Scholar 

  • Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56(293), 52–64. https://doi.org/10.1080/01621459.1961.10482090

    Article  MathSciNet  Google Scholar 

  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., & Wright, R. (2023). Opinion Paper: So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642

    Article  Google Scholar 

  • Eisen, A., Hall, A., Lee, T. S., & Zupko, J. (2009). Teaching Water: Connecting Across disciplines and into Daily Life to address Complex Societal issues. College Teaching, 57(2), 99–104. https://doi.org/10.3200/CTCH.57.2.99-104

    Article  Google Scholar 

  • Elsayed, S. (2023). Towards Mitigating ChatGPT’s Negative Impact on Education: Optimizing Question Design through Bloom’s Taxonomy (arXiv:2304.08176). arXiv. https://doi.org/10.48550/arXiv.2304.08176

  • Falk, J. H. (1983). Field trips: A look at environmental effects on learning. Journal of Biological Education, 17(2), 137–142. https://doi.org/10.1080/00219266.1983.9654522

    Article  Google Scholar 

  • Frodeman, R., Klein, J. T., Mitcham, C., & Holbrook, J. B. (2010). The Oxford Handbook of Interdisciplinarity. Oxford University Press.

  • Ghazali, S. A., Zaki, N., Ali, L., & Harous, S. (2024). Exploring the potential of ChatGPT as a Substitute teacher: A Case Study. International Journal of Information and Education Technology, 14(2), 271–278. https://doi.org/10.18178/ijiet.2024.14.2.2048

    Article  Google Scholar 

  • Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi, L., Taylor, R. A., & Chartash, D. (2023). How does ChatGPT perform on the United States Medical Licensing examination? The implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Medical Education, 9(1), e45312. https://doi.org/10.2196/45312

    Article  Google Scholar 

  • Götz, F. M., Gosling, S. D., & Rentfrow, P. J. (2022). Small effects: The Indispensable Foundation for a cumulative Psychological Science. Perspectives on Psychological Science, 17(1), 205–215. https://doi.org/10.1177/1745691620984483

    Article  Google Scholar 

  • Gvili, I. E. F., Weissburg, M., Yen, J., Helms, M. E., & Tovey, C. (2016). Development of scoring rubric for evaluating integrated understanding in an undergraduate biologically-inspired design course. International Journal of Engineering Education. https://www.semanticscholar.org/paper/Development-of-scoring-rubric-for-evaluating-in-an-Gvili-Weissburg/53fb00b8bf56209192de2da3528aa31adafc5f66

  • He, F., Mazumdar, S., Tang, G., Bhatia, T., Anderson, S. J., Dew, M. A., Krafty, R., Nimgaonkar, V., Deshpande, S., Hall, M., & Reynolds, I. I. I., C. F (2017). Non-parametric MANOVA approaches for non-normal multivariate outcomes with missing values. Communications in Statistics - Theory and Methods, 46(14), 7188–7200. https://doi.org/10.1080/03610926.2016.1146767

    Article  MathSciNet  Google Scholar 

  • Hong, W. C. H. (2023). The impact of ChatGPT on foreign language teaching and learning: Opportunities in education and research. Journal of Educational Technology and Innovation, 5(1), Article1. https://jeti.thewsu.org/index.php/cieti/article/view/103

    Article  Google Scholar 

  • Huang, W., Hew, K. F., & Fryer, L. K. (2022). Chatbots for language learning—are they really useful? A systematic review of chatbot-supported language learning. Journal of Computer Assisted Learning, 38(1), 237–257. https://doi.org/10.1111/jcal.12610

    Article  Google Scholar 

  • Huutoniemi, K. (2010). Evaluating interdisciplinary research. In R. Frodeman, J. T. Klein, C. Mitcham, & J. B. Holbrook (Eds.), The Oxford handbook of interdisciplinarity (pp. 309–320). Oxford University Press.

  • Hwang, A. H. C., & Won, A. S. (2021). IdeaBot: Investigating Social Facilitation in Human-Machine Team Creativity. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3411764.3445270

  • Iku-Silan, A., Hwang, G. J., & Chen, C. H. (2023). Decision-guided chatbots and cognitive styles in interdisciplinary learning. Computers & Education, 201, 104812. https://doi.org/10.1016/j.compedu.2023.104812

    Article  Google Scholar 

  • Ivanitskaya, L., Clark, D., Montgomery, G., & Primeau, R. (2002). Interdisciplinary learning: Process and outcomes. Innovative Higher Education, 27(2), 95–111. https://doi.org/10.1023/A:1021105309984

    Article  Google Scholar 

  • Jeon, J., & Lee, S. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies. https://doi.org/10.1007/s10639-023-11834-1

    Article  Google Scholar 

  • Kajonmanee, T., Chaipidech, P., Srisawasdi, N., & Chaipah, K. (2020). A personalised mobile learning system for promoting STEM discipline teachers’ TPACK development. International Journal of Mobile Learning and Organisation, 14(2), 215–235. https://doi.org/10.1504/IJMLO.2020.106186

    Article  Google Scholar 

  • Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274

    Article  Google Scholar 

  • Kidron, A. (2015). Y. Kali (Ed.), Boundary breaking for interdisciplinary learning. Research in Learning Technology 23 https://doi.org/10.3402/rlt.v23.26496

  • Kidron, A., & Kali, Y. (2023). Promoting interdisciplinary understanding in asynchronous online higher education courses: A learning communities approach. Instructional Science, 1–31. https://doi.org/10.1007/s11251-023-09635-7

  • Klein, J. T., & Newell, W. H. (1997). Advancing Interdisciplinary studies. In J. G. Gaff, & J. L. Ratcliff (Eds.), Handbook of the undergraduate Crriculum: A Comprehensive Guide to purposes, structures, practices, and change (pp. 393–415). Jossey-Bass.

  • Kostka, I., & Toncelli, R. (2023). Exploring applications of ChatGPT to English Language Teaching: Opportunities, challenges, and recommendations. Teaching English as a second or foreign. Language–TESL-EJ, 27(3). https://doi.org/10.55593/ej.27107int

  • Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd ed.). Sage.

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  • Lam, J. C. K., Walker, R. M., & Hills, P. (2014). Interdisciplinarity in sustainability studies: A review. Sustainable Development, 22(3), 158–176. https://doi.org/10.1002/sd.533

    Article  Google Scholar 

  • Lattuca, L., Knight, D., & Bergom, I. (2012). Developing a measure of interdisciplinary competence for engineers. 2012 ASEE Annual Conference & Exposition Proceedings, 25.415.1-25.415.19. https://doi.org/10.18260/1-2--21173

  • Lee, H. Y., Cheng, Y. P., Wang, W. S., Lin, C. J., & Huang, Y. M. (2023). Exploring the learning process and effectiveness of STEM Education via Learning Behavior Analysis and the interactive-constructive- active-Passive Framework. Journal of Educational Computing Research, 61(5), 951–976. https://doi.org/10.1177/07356331221136888

    Article  Google Scholar 

  • Lo, C. K. (2023). What is the impact of ChatGPT on Education? A Rapid Review of the literature. Education Sciences, 13(4). https://doi.org/10.3390/educsci13040410 Article 4.

  • Lyall, C., Meagher, L., Bandola, J., & Kettle, A. (2016). Interdisciplinary provision in higher education: Current and future challenges. University of Edinburgh.

  • MacLeod, M. (2018). What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese, 195(2), 697–720. https://doi.org/10.1007/s11229-016-1236-4

    Article  Google Scholar 

  • MacLeod, M., & van der Veen, J. T. (2020). Scaffolding interdisciplinary project-based learning: A case study. European Journal of Engineering Education, 45(3), 363–377. https://doi.org/10.1080/03043797.2019.1646210

    Article  Google Scholar 

  • Madden, M. E., Baxter, M., Beauchamp, H., Bouchard, K., Habermas, D., Huff, M., Ladd, B., Pearon, J., & Plague, G. (2013). Rethinking STEM Education: An interdisciplinary STEAM curriculum. Procedia Computer Science, 20, 541–546. https://doi.org/10.1016/j.procs.2013.09.316

    Article  Google Scholar 

  • Markauskaite, L., Muukkonen, H., Damsa, C., Thompson, K., Arthars, N., Celik, I., Sutphen, M., Esterhazy, R., Solbrekke, T. D., Sugrue, C., McCune, V., Wheeler, P., Vasco, D., & Kali, Y. (2020). Interdisciplinary Learning in Undergraduate and Graduate Education: Conceptualizations and Empirical Accounts. https://repository.isls.org//handle/1/6664

  • Maugoust, J. (2023). Multivariate Kruskal-Wallis test [Computer software]. https://github.com/jacobmaugoust/ULT/blob/master/R/multkw.R

  • McBee, J. C., Han, D. Y., Liu, L., Ma, L., Adjeroh, D. A., Xu, D., & Hu, G. (2023). Interdisciplinary Inquiry via PanelGPT: Application to explore Chatbot Application in sports Rehabilitation. medRxiv, 2023.07.23.23292452. https://doi.org/10.1101/2023.07.23.23292452

  • Merrell, B., Calderwood, K. J., & Graham, T. (2017). Across the disciplines: Structured Classroom debates in Interdisciplinary Curricula. Contemporary Argumentation & Debate, 37, 57–74.

    Google Scholar 

  • Ogle, D., Doll, J., Wheeler, A., & Dinno, A. (2023). FSA: Simple Fisheries Stock Assessment Methods (R package version 0.9.5) [Computer software]. https://CRAN.R-project.org/package=FSA

  • Okonkwo, C. W., & Ade-Ibijola, A. (2021). Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2, 100033. https://doi.org/10.1016/j.caeai.2021.100033

    Article  Google Scholar 

  • OpenAI (2023). ChatGPT. https://chat.openai.com

  • Ouyang, F., Wu, M., Zhang, L., Xu, W., Zheng, L., & Cukurova, M. (2023). Making strides towards AI-supported regulation of learning in collaborative knowledge construction. Computers in Human Behavior, 142, 107650. https://doi.org/10.1016/j.chb.2023.107650

    Article  Google Scholar 

  • Prentzas, J., & Sidiropoulou, M. (2023). Assessing the Use of Open AI Chat-GPT in a University Department of Education. 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA), 1–4. https://doi.org/10.1109/IISA59645.2023.10345910

  • Qadir, J. (2023). Engineering Education in the Era of ChatGPT: Promise and Pitfalls of Generative AI for Education. 2023 IEEE Global Engineering Education Conference (EDUCON), 1–9. https://doi.org/10.1109/EDUCON54358.2023.10125121

  • Redshaw, C. H., & Frampton, I. (2014). Optimising inter-disciplinary problem-based learning in Postgraduate Environmental and Science Education: Recommendations from a case study. International Journal of Environmental and Science Education, 9(1), 97–110.

    Google Scholar 

  • Remington-Doucette, S. M., Hiller Connell, K. Y., Armstrong, C. M., & Musgrove, S. L. (2013). Assessing sustainability education in a transdisciplinary undergraduate course focused on real‐world problem solving: A case for disciplinary grounding. International Journal of Sustainability in Higher Education, 14(4), 404–433. https://doi.org/10.1108/IJSHE-01-2012-0001

    Article  Google Scholar 

  • Roy, E. D., Morzillo, A. T., Seijo, F., Reddy, S. M. W., Rhemtulla, J. M., Milder, J. C., Kuemmerle, T., & Martin, S. L. (2013). The elusive pursuit of Interdisciplinarity at the Human—Environment Interface. BioScience, 63(9), 745–753. https://doi.org/10.1525/bio.2013.63.9.10

    Article  Google Scholar 

  • Ruiz-Primo, M. A., Shavelson, R. J., Hamilton, L., & Klein, S. (2002). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching, 39(5), 369–393. https://doi.org/10.1002/tea.10027

    Article  Google Scholar 

  • Sadeghi, H., & Kardan, A. A. (2015). A novel justice-based linear model for optimal learner group formation in computer-supported collaborative learning environments. Computers in Human Behavior, 48, 436–447. https://doi.org/10.1016/j.chb.2015.01.020

    Article  Google Scholar 

  • Sharp, E. (2015). Interdisciplinary experiences: A postgraduate geographer’s perspective. Journal of Geography in Higher Education, 39(2), 220–225. https://doi.org/10.1080/03098265.2014.956295

    Article  Google Scholar 

  • Spelt, E. J. H., Biemans, H. J. A., Tobi, H., Luning, P. A., & Mulder, M. (2009). Teaching and learning in interdisciplinary higher education: A systematic review. Educational Psychology Review, 21(4), 365–378. https://doi.org/10.1007/s10648-009-9113-z

    Article  Google Scholar 

  • Stentoft, D. (2017). From saying to doing interdisciplinary learning: Is problem-based learning the answer? Active Learning in Higher Education, 18(1), 51–61. https://doi.org/10.1177/1469787417693510

    Article  Google Scholar 

  • Stutz, P., Elixhauser, M., Grubinger-Preiner, J., Linner, V., Reibersdorfer-Adelsberger, E., Traun, C., Wallentin, G., Wöhs, K., & Zuberbühler, T. (2023). Ch(e)atGPT? An Anecdotal Approach addressing the Impact of ChatGPT on Teaching and Learning GIScience [Preprint]. EdArXiv. https://doi.org/10.35542/osf.io/j3m9b

  • Tang, J., Zhou, X., Wan, X., Daley, M., & Bai, Z. (2023). ML4STEM Professional Development Program: Enriching K-12 STEM teaching with machine learning. International Journal of Artificial Intelligence in Education, 33(1), 185–224. https://doi.org/10.1007/s40593-022-00292-4

    Article  Google Scholar 

  • Troussas, C., Krouska, A., & Virvou, M. (2017). Integrating an Adjusted Conversational Agent into a Mobile-Assisted Language Learning Application. 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 1153–1157. https://doi.org/10.1109/ICTAI.2017.00176

  • Upton, K., & Kay, J. (2009). Narcissus: Group and Individual Models To Support Small Group Work. In G. J. Houben, G. McCalla, F. Pianesi, & M. Zancanaro (Eds.), User modeling, Adaptation, and personalization (Vol. 5535, pp. 54–65). Springer. https://doi.org/10.1007/978-3-642-02247-0_8

  • Xu, L. (2020). The Dilemma and countermeasures of AI in Educational Application. 2020 4th International Conference on Computer Science and Artificial Intelligence, 289, 294. https://doi.org/10.1145/3445815.3445863

    Article  Google Scholar 

  • Yee, B. L. C., Hou, C., Zhu, G., Lim, F. S., Lyu, S., & Fan, X. (2023). A Software platform for evaluating Student essays in Interdisciplinary learning with topic classification techniques. Artificial Intelligence in Education, 645–651. https://doi.org/10.1007/978-3-031-36336-8_100

  • Zhan, Y., So, W. W. M., & Cheng, I. N. Y. (2017). Students’ beliefs and experiences of interdisciplinary learning. Asia Pacific Journal of Education, 37(3), 375–388. https://doi.org/10.1080/02188791.2017.1301880

    Article  Google Scholar 

  • Zhu, G., & Burrow, A. L. (2022). Youth Voice in Self-Driven Learning as a context for Interdisciplinary Learning. Journal of Educational Studies and Multidisciplinary Approaches, 2(1). https://doi.org/10.51383/jesma.2022.29

  • Zhu, G., Fan, X., Hou, C., Zhong, T., Seow, P., Shen-Hsing, A. C., Rajalingam, P., Yew, L. K., & Poh, T. L. (2023). Embrace Opportunities and Face Challenges: Using ChatGPT in Undergraduate Students’ Collaborative Interdisciplinary Learning (arXiv:2305.18616). arXiv. https://doi.org/10.48550/arXiv.2305.18616

Download references

Acknowledgements

The authors are indebted to the students who participated in this study.

Funding

This study was supported by the NTU Edex Teaching and Learning Grants (Grant No. NTU EdeX 1/22 ZG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoxia Zhu.

Ethics declarations

Competing interests

The authors declare no potential conflict of interest in the work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Zhu, G., Hou, C. et al. The influences of ChatGPT on undergraduate students’ demonstrated and perceived interdisciplinary learning. Educ Inf Technol 29, 23577–23603 (2024). https://doi.org/10.1007/s10639-024-12787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-024-12787-9

Keywords

Profiles

  1. Gaoxia Zhu