Skip to main content

Advertisement

Log in

From development to clinical success: the journey of established and next-generation BTK inhibitors

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Over the past decade, Bruton’s tyrosine kinase (BTK) has emerged as a pivotal therapeutic target for B-cell malignancies and autoimmune diseases, given its essential role in B-cell development and function. Dysregulation of BTK signalling is implicated in a range of hematologic cancers, including Waldenström’s macroglobulinaemia (WM), mantle cell lymphoma (MCL), and chronic lymphocytic leukaemia (CLL). The development of BTK inhibitors (BTKIs), starting with ibrutinib, has revolutionized the treatment of these malignancies by inhibiting B-cell receptor (BCR) signalling and inducing apoptosis in malignant B-cells. Despite the impressive clinical efficacy of ibrutinib, challenges such as resistance mutations and off-target effects remain. To address these issues, next-generation BTKIs, including acalabrutinib, orelabrutinib, zanubrutinib, and pirtobrutinib, have been developed, offering improved specificity and reduced toxicity profiles. This review highlights the therapeutic potential of BTK-targeted therapies in treating B-cell malignancies, discusses recent advancements with FDA-approved BTKIs, and explores the latest clinical outcomes from ongoing trials of novel inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable

References

  1. Rawlings DJ, Witte ON (1994) Bruton’s tyrosine kinase is a key regulator in B-cell development. Immunol Rev 138(1):105–119. https://doi.org/10.1111/j.1600-065X.1994.tb00849.x

    Article  CAS  PubMed  Google Scholar 

  2. Smith CI, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M (2001) The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species, BioEssays News Rev. Mol Cell Dev Biol 23(5):436–446. https://doi.org/10.1002/bies.1062

    Article  CAS  Google Scholar 

  3. Wu H et al (2014) Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem Biol 9(5):1086–1091. https://doi.org/10.1021/cb4008524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hagemann T., Kwan SP. (1993) A BstNI polymorphism at the BTK locus in Xq21.3 – Xq22 Hum Mol Genet. 2(12):2201. https://doi.org/10.1093/hmg/2.12.2201.

  5. Vetrie D et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361(6409):226–233. https://doi.org/10.1038/361226a0

    Article  CAS  PubMed  Google Scholar 

  6. Bruton OC (1952) Agammaglobulinemia. Pediatrics 9(6):722–728. https://doi.org/10.1542/peds.9.6.722

    Article  CAS  PubMed  Google Scholar 

  7. Suri D, Rawat A, Singh S (2016) X-linked agammaglobulinemia. Indian J Pediatr 83(4):331–337. https://doi.org/10.1007/s12098-015-2024-8

    Article  PubMed  Google Scholar 

  8. Väliaho J, Smith CIE, Vihinen M (2006) BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat 27(12):1209–1217. https://doi.org/10.1002/humu.20410

    Article  CAS  PubMed  Google Scholar 

  9. Tsukada S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2):279–290. https://doi.org/10.1016/0092-8674(93)90667-f

    Article  CAS  PubMed  Google Scholar 

  10. Riggs J, Howell K, Matechin B, Matlack R, Pennello A, Chiasson R (2003) X-chromosome-linked immune-deficient mice have B-1b cells. Immunology 108(4):440–451. https://doi.org/10.1046/j.1365-2567.2003.01624.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X et al (2011) Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12(5):416–424. https://doi.org/10.1038/ni.2015

    Article  CAS  PubMed  Google Scholar 

  12. Quek LS, Bolen J, Watson SP (1998) A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 8(20):1137-S1. https://doi.org/10.1016/S0960-9822(98)70471-3

    Article  CAS  PubMed  Google Scholar 

  13. Honda F et al (2012) The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13(4):369–378. https://doi.org/10.1038/ni.2234

    Article  CAS  PubMed  Google Scholar 

  14. Genevier HC et al (1994) Expression of Bruton’s tyrosine kinase protein within the B cell lineage. Eur J Immunol 24(12):3100–3105. https://doi.org/10.1002/eji.1830241228

    Article  CAS  PubMed  Google Scholar 

  15. Katz FE et al (1994) Expression of the X-linked agammaglobulinemia gene, btk in B-cell acute lymphoblastic leukemia. Leukemia 8(4):574–577

    CAS  PubMed  Google Scholar 

  16. Brullo C, Villa C, Tasso B, Russo E, Spallarossa A (2021) Btk inhibitors: a medicinal chemistry and drug delivery perspective. Int J Mol Sci 22(14):7641. https://doi.org/10.3390/ijms22147641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manji F, Puckrin R, Stewart DA (2021) Novel synthetic drugs for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother 22(11):1417–1427. https://doi.org/10.1080/14656566.2021.1902988

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt U, Boucheron N, Unger B, Ellmeier W (2004) The role of Tec family kinases in myeloid cells. Int Arch Allergy Immunol 134(1):65–78. https://doi.org/10.1159/000078339

    Article  CAS  PubMed  Google Scholar 

  19. Hyvönen M, Saraste M (1997) Structure of the PH domain and Btk motif from Bruton’s tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 16(12):3396–3404. https://doi.org/10.1093/emboj/16.12.3396

    Article  PubMed  PubMed Central  Google Scholar 

  20. Várnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274(16):10983–10989. https://doi.org/10.1074/jbc.274.16.10983

    Article  PubMed  Google Scholar 

  21. Kang SW et al (2001) PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J 20(20):5692–5702. https://doi.org/10.1093/emboj/20.20.5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vihinen M, Nilsson L, Smith CI (1994) Tec homology (TH) adjacent to the PH domain. FEBS Lett 350(2–3):263–265. https://doi.org/10.1016/0014-5793(94)00783-7

    Article  CAS  PubMed  Google Scholar 

  23. Park H et al (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4(5):515–525. https://doi.org/10.1016/s1074-7613(00)80417-3

    Article  CAS  PubMed  Google Scholar 

  24. Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ (1997) Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A 94(21):11526–11533. https://doi.org/10.1073/pnas.94.21.11526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan Z et al (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61. https://doi.org/10.1002/cmdc.200600221

    Article  CAS  PubMed  Google Scholar 

  26. Bender AT et al (2017) Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol Pharmacol 91(3):208–219. https://doi.org/10.1124/mol.116.107037

    Article  CAS  PubMed  Google Scholar 

  27. Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CI (2000) Nucleocytoplasmic shuttling of Bruton’s tyrosine kinase. J Biol Chem 275(51):40614–40619. https://doi.org/10.1074/jbc.M006952200

    Article  CAS  PubMed  Google Scholar 

  28. Li T, Rawlings DJ, Park H, Kato RM, Witte ON, Satterthwaite AB (1997) Constitutive membrane association potentiates activation of Bruton tyrosine kinase. Oncogene 15(12):1375–1383. https://doi.org/10.1038/sj.onc.1201308

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Wahl MI, Eguinoa A, Stephens LR, Hawkins PT, Witte ON (1997) Phosphatidylinositol 3-kinase-γ activates Bruton’s tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A 94(25):13820–13825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang A, Craxton A, Kurosaki T, Clark EA (1998) Different protein tyrosine kinases are required for B cell antigen receptor–mediated activation of extracellular signal–regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J Exp Med 188(7):1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petro JB, Rahman SMJ, Ballard DW, Khan WN (2000) Bruton’s tyrosine kinase is required for activation of Iκb kinase and nuclear factor κb in response to B cell receptor engagement. J Exp Med 191(10):1745–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hart JR, Liao L, Yates JR, Vogt PK (2011) Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc Natl Acad Sci 108(32):13247–13252. https://doi.org/10.1073/pnas.1110486108

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hayakawa K et al (2019) Crucial role of increased Arid3a at the pre-B and immature B cell stages for B1a cell generation. Front Immunol 10:457. https://doi.org/10.3389/fimmu.2019.00457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang W, Desiderio S (1997) BAP-135, a target for Bruton’s tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci U S A 94(2):604–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson JS, Teutsch M, Dong Z, Wortis HH (1996) An essential role for Bruton’s [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci U S A 93(20):10966–10971. https://doi.org/10.1073/pnas.93.20.10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kil LP et al (2012) Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119(16):3744–3756. https://doi.org/10.1182/blood-2011-12-397919

    Article  CAS  PubMed  Google Scholar 

  37. Aoki Y, Isselbacher KJ, Pillai S (1994) Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A 91(22):10606–10609. https://doi.org/10.1073/pnas.91.22.10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Weers M et al (1994) B-cell antigen receptor stimulation activates the human Bruton’s tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem 269(39):23857–23860. https://doi.org/10.1016/S0021-9258(19)51014-6

    Article  PubMed  Google Scholar 

  39. Hendriks RW, Middendorp S (2004) The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol 25(5):249–256. https://doi.org/10.1016/j.it.2004.02.011

    Article  CAS  PubMed  Google Scholar 

  40. Tkachenko A, Kupcova K, Havranek O (2023) B-cell receptor signaling and beyond: the role of Igα (CD79a)/Igβ (CD79b) in normal and malignant B cells. Int J Mol Sci 25(1):10. https://doi.org/10.3390/ijms25010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmid VK, Hobeika E (2024) B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front Oncol 14:1339620. https://doi.org/10.3389/fonc.2024.1339620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeLuca JM, Murphy MK, Wang X, Wilson TJ (2021) FCRL1 regulates B cell receptor–induced ERK activation through GRB2. J Immunol 207(11):2688–2698. https://doi.org/10.4049/jimmunol.2100218

    Article  CAS  PubMed  Google Scholar 

  43. Saito K, Scharenberg AM, Kinet JP (2001) Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem 276(19):16201–16206. https://doi.org/10.1074/jbc.M100873200

    Article  CAS  PubMed  Google Scholar 

  44. Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG (2004) Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol Cell Biol 24(22):9986–9999. https://doi.org/10.1128/MCB.24.22.9986-9999.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W (2021) The role of Ca2+/calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 54(11):e13122. https://doi.org/10.1111/cpr.13122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH (2000) Bruton’s tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med 191(10):1735–1744. https://doi.org/10.1084/jem.191.10.1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hashimoto A et al (1998) Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 188(7):1287–1295. https://doi.org/10.1084/jem.188.7.1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ren L et al (2016) Analysis of the effects of the Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib on monocyte Fcγ receptor (FcγR) function *. J Biol Chem 291(6):3043–3052. https://doi.org/10.1074/jbc.M115.687251

    Article  CAS  PubMed  Google Scholar 

  50. Doyle SL, Jefferies CA, Feighery C, O’Neill LAJ (2007) Signaling by Toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem 282(51):36953–36960. https://doi.org/10.1074/jbc.M707682200

    Article  CAS  PubMed  Google Scholar 

  51. Spaargaren M et al (2003) The B cell antigen receptor controls integrin activity through Btk and PLCγ2. J Exp Med 198(10):1539–1550. https://doi.org/10.1084/jem.20011866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mueller H et al (2010) Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways. Blood 115(15):3118–3127. https://doi.org/10.1182/blood-2009-11-254185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Satterthwaite AB, Witte ON (2000) The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev 175:120–127

    Article  CAS  PubMed  Google Scholar 

  54. Sharma S, Orlowski G, Song W. (2009) Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells,” J. Immunol. Baltim. Md 1950 182(1):329–339 https://doi.org/10.4049/jimmunol.182.1.329

  55. Herishanu Y et al (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2):563–574. https://doi.org/10.1182/blood-2010-05-284984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh SP et al (2017) Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signalling. Oncotarget 8(42):71981–71995. https://doi.org/10.18632/oncotarget.18234

    Article  PubMed  PubMed Central  Google Scholar 

  57. de Rooij MFM et al (2012) The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119(11):2590–2594. https://doi.org/10.1182/blood-2011-11-390989

    Article  CAS  PubMed  Google Scholar 

  58. Ponader S et al (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5):1182–1189. https://doi.org/10.1182/blood-2011-10-386417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheah CY, Seymour JF, Wang ML (2016) Mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 34(11):1256–1269. https://doi.org/10.1200/JCO.2015.63.5904

    Article  CAS  Google Scholar 

  60. Cinar M, Hamedani F, Mo Z, Cinar B, Amin HM, Alkan S (2013) Bruton tyrosine kinase is commonly overexpressed in mantle cell lymphoma and its attenuation by ibrutinib induces apoptosis. Leuk Res 37(10):1271–1277. https://doi.org/10.1016/j.leukres.2013.07.028

    Article  CAS  PubMed  Google Scholar 

  61. Pighi C et al (2011) Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol Dordr Neth 34(2):141–153. https://doi.org/10.1007/s13402-011-0019-7

    Article  CAS  Google Scholar 

  62. Alizadeh AA et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511. https://doi.org/10.1038/35000501

    Article  CAS  PubMed  Google Scholar 

  63. Chang BY et al (2013) Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood 122(14):2412–2424. https://doi.org/10.1182/blood-2013-02-482125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iqbal J et al (2015) Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 125(7):1137–1145. https://doi.org/10.1182/blood-2014-04-566778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Janz S (2013) Waldenström macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN Hematol 2013:815325. https://doi.org/10.1155/2013/815325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng Y, Duan W, Cu X, Liang C, Xin M (2019) Bruton’s tyrosine kinase (BTK) inhibitors in treating cancer: a patent review (2010–2018). Expert Opin Ther Pat 29(4):217–241. https://doi.org/10.1080/13543776.2019.1594777

    Article  CAS  PubMed  Google Scholar 

  67. Hunter ZR et al (2014) The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 123(11):1637–1646. https://doi.org/10.1182/blood-2013-09-525808

    Article  CAS  PubMed  Google Scholar 

  68. Ngo HT et al (2008) SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 112(1):150–158. https://doi.org/10.1182/blood-2007-12-129395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Elbezanti WO et al. (2022) Development of a novel Bruton’s tyrosine kinase inhibitor that exerts anti-cancer activities potentiates response of chemotherapeutic agents in multiple myeloma stem cell-like cells. Front Pharmacol. 13. https://doi.org/10.3389/fphar.2022.894535.

  70. Yang Y et al (2015) Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma. Cancer Res 75(3):594–604. https://doi.org/10.1158/0008-5472.CAN-14-2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tai Y-T et al (2012) Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 120(9):1877–1887. https://doi.org/10.1182/blood-2011-12-396853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Young WB et al (2015) Potent and selective Bruton’s tyrosine kinase inhibitors: discovery of GDC-0834. Bioorg Med Chem Lett 25(6):1333–1337. https://doi.org/10.1016/j.bmcl.2015.01.032

    Article  CAS  PubMed  Google Scholar 

  73. Yan Q et al (2012) BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica 97(4):595–598. https://doi.org/10.3324/haematol.2011.054080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mahajan S et al (1999) Rational design and synthesis of a novel anti-leukemic agent targeting Bruton’s tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 274(14):9587–9599. https://doi.org/10.1074/jbc.274.14.9587

    Article  CAS  PubMed  Google Scholar 

  75. Bernal A et al (2001) Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood 98(10):3050–3057. https://doi.org/10.1182/blood.v98.10.3050

    Article  CAS  PubMed  Google Scholar 

  76. Estupiñán HY, Berglöf A, Zain R, Smith CIE (2021) Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev Biol 9:630942. https://doi.org/10.3389/fcell.2021.630942

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tasso B, Spallarossa A, Russo E, Brullo C. (2021) The development of BTK inhibitors: a five-year update. Molecules, 26(23). https://doi.org/10.3390/molecules26237411.

  78. de Claro RA et al. (2015) FDA approval: ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukaemia. Clin Cancer Res Off. J Am Assoc Cancer Res. 21(16):3586–3590 https://doi.org/10.1158/1078-0432.CCR-14-2225

  79. Byrd JC et al (2016) Acalabrutinib (ACP-196) in Relapsed chronic lymphocytic leukemia. N Engl J Med 374(4):323–332. https://doi.org/10.1056/NEJMoa1509981

    Article  CAS  PubMed  Google Scholar 

  80. Tam CS et al (2019) Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood 134(11):851–859. https://doi.org/10.1182/blood.2019001160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. C. for D. E. and Research, FDA grants accelerated approval to zanubrutinib for relapsed or refractory follicular lymphoma, FDA, Aug. 2024, Accessed: Aug. 13, 2024. [Online]. Available: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zanubrutinib-relapsed-or-refractory-follicular-lymphoma

  82. Tam CS et al. (2020) A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study”, https://doi.org/10.1182/blood.2020006844.

  83. Brown JR et al (2023) Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 388(4):319–332. https://doi.org/10.1056/NEJMoa2211582

    Article  CAS  PubMed  Google Scholar 

  84. Dhillon S (2020) Tirabrutinib: first approval. Drugs 80(8):835–840. https://doi.org/10.1007/s40265-020-01318-8

    Article  CAS  PubMed  Google Scholar 

  85. YH et al. (2024) Three-year follow-up analysis of phase 1/2 study on tirabrutinib in patients with relapsed or refractory primary central nervous system lymphoma,” Neuro-Oncol. Adv. 6(1). https://doi.org/10.1093/noajnl/vdae037.

  86. Narita Y et al (2021) Phase I/II study of tirabrutinib, a second-generation Bruton’s tyrosine kinase inhibitor, in relapsed/refractory primary central nervous system lymphoma. Neuro-Oncol 23(1):122–133. https://doi.org/10.1093/neuonc/noaa145

    Article  CAS  PubMed  Google Scholar 

  87. Xu W et al (2021) Orelabrutinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: updated long term results of phase II study. Blood 138:2638. https://doi.org/10.1182/blood-2021-146491

    Article  Google Scholar 

  88. Deng L-J et al (2023) Orelabrutinib for the treatment of relapsed or refractory MCL: a phase 1/2, open-label, multicenter, single-arm study. Blood Adv 7(16):4349–4357. https://doi.org/10.1182/bloodadvances.2022009168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Press Release | INNOCARE. Accessed: Oct. 06, 2024. [Online]. Available: https://www.innocarepharma.com/en/investor/news

  90. Dhillon S (2021) Orelabrutinib: first approval. Drugs 81(4):503–507. https://doi.org/10.1007/s40265-021-01482-5

    Article  CAS  PubMed  Google Scholar 

  91. Keam SJ (2023) Pirtobrutinib: first approval. Drugs 83(6):547–553. https://doi.org/10.1007/s40265-023-01860-1

    Article  CAS  PubMed  Google Scholar 

  92. Wang ML et al (2023) Pirtobrutinib in covalent Bruton tyrosine kinase inhibitor pretreated mantle-cell lymphoma. J Clin Oncol 41(24):3988–3997. https://doi.org/10.1200/JCO.23.00562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mato AR et al (2023) Pirtobrutinib after a covalent BTK inhibitor in chronic lymphocytic leukemia. N Engl J Med 389(1):33–44. https://doi.org/10.1056/NEJMoa2300696

    Article  CAS  PubMed  Google Scholar 

  94. Wang E et al (2022) Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N Engl J Med 386(8):735–743. https://doi.org/10.1056/NEJMoa2114110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Davids MS, Brown JR (2014) Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol Lond Engl 10(6):957–967. https://doi.org/10.2217/fon.14.51

    Article  CAS  Google Scholar 

  96. Honigberg LA et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 107(29):13075–13080. https://doi.org/10.1073/pnas.1004594107

    Article  PubMed  PubMed Central  Google Scholar 

  97. Herman SEM et al (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117(23):6287–6296. https://doi.org/10.1182/blood-2011-01-328484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang ML et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369(6):507–516. https://doi.org/10.1056/NEJMoa1306220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Byrd JC et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369(1):32–42. https://doi.org/10.1056/NEJMoa1215637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sharma A, Raut SS, Dhikale P, Khushboo, Mishra A. (2024) Navigating the landscape of cancer-induced thrombocytopenia: current challenges and emerging advances,” in Industrial microbiology and biotechnology, P. Verma, Ed., Singapore: Springer Nature Singapore, 435–463. https://doi.org/10.1007/978-981-97-6270-5_14.

  101. Munir T et al (2019) Final analysis from RESONATE: up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol 94(12):1353–1363. https://doi.org/10.1002/ajh.25638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. “IMBRUVICA® (ibrutinib) Approved by U.S. FDA for the first-line treatment of chronic lymphocytic leukemia,” AbbVie News Center. Accessed: Jan. 28, 2025. [Online]. Available: https://news.abbvie.com/2016-03-04-IMBRUVICA-ibrutinib-Approved-by-U-S-FDA-for-the-First-line-Treatment-of-Chronic-Lymphocytic-Leukemia

  103. Burger J et al (2024) CLL-076 final analysis of the RESONATE-2 study: up to 10 years of follow-up of first-line ibrutinib treatment in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Clin Lymphoma Myeloma Leuk 24:S342–S343. https://doi.org/10.1016/S2152-2650(24)01259-X

    Article  Google Scholar 

  104. Awan FT et al (2024) Single-agent ibrutinib versus allogeneic hematopoietic cell transplantation for patients with relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma and del(17p). Blood 144(Supplement 1):2178–2178. https://doi.org/10.1182/blood-2024-194156

    Article  Google Scholar 

  105. Advani RH et al (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol Off J Am Soc Clin Oncol 31(1):88–94. https://doi.org/10.1200/JCO.2012.42.7906

    Article  CAS  Google Scholar 

  106. “Update on IMBRUVICA® (ibrutinib) U.S. accelerated approvals for mantle cell lymphoma and marginal zone lymphoma indications,” JNJ.com. Accessed: Oct. 06, 2024. [Online]. Available: https://www.jnj.com/media-center/press-releases/update-on-imbruvica-ibrutinib-u-s-accelerated-approvals-for-mantle-cell-lymphoma-and-marginal-zone-lymphoma-indications

  107. Wen T, Wang J, Shi Y, Qian H, Liu P (2021) Inhibitors targeting Bruton’s tyrosine kinase in cancers: drug development advances. Leukemia 35(2):312–332. https://doi.org/10.1038/s41375-020-01072-6

    Article  CAS  PubMed  Google Scholar 

  108. Wu J, Zhang M, Liu D. (2016) Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol.J Hematol Oncol. 9(21). https://doi.org/10.1186/s13045-016-0250-9.

  109. Byrd JC et al (2021) Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol 39(31):3441–3452. https://doi.org/10.1200/JCO.21.01210

    Article  CAS  Google Scholar 

  110. Thompson PA, Tam CS (2023) Pirtobrutinib: a new hope for patients with BTK inhibitor–refractory lymphoproliferative disorders. Blood 141(26):3137–3142. https://doi.org/10.1182/blood.2023020240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Blombery P et al (2022) Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: potential for pirtobrutinib cross-resistance. Blood Adv 6(20):5589–5592. https://doi.org/10.1182/bloodadvances.2022008325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Isenberg D et al (2021) Efficacy, safety, and pharmacodynamic effects of the Bruton’s tyrosine kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: results of a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol 73(10):1835–1846. https://doi.org/10.1002/art.41811

    Article  CAS  PubMed  Google Scholar 

  113. Caldwell RD et al (2019) Discovery of evobrutinib: an oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J Med Chem 62(17):7643–7655. https://doi.org/10.1021/acs.jmedchem.9b00794

    Article  CAS  PubMed  Google Scholar 

  114. Haselmayer P et al. (2019) Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J Immunol Baltim. Md 1950 202(10):2888–2906. https://doi.org/10.4049/jimmunol.1800583.

  115. Kuter DJ et al (2021) LUNA3 phase III multicenter, double-blind, randomized, placebo-controlled trial of the oral BTK inhibitor rilzabrutinib in adults and adolescents with persistent or chronic immune thrombocytopenia. Blood 138:1010. https://doi.org/10.1182/blood-2021-144504

    Article  Google Scholar 

  116. Reich DS et al (2021) Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 20(9):729–738. https://doi.org/10.1016/S1474-4422(21)00237-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brown JR et al (2016) Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica 101(7):e295–e298. https://doi.org/10.3324/haematol.2015.140806

    Article  PubMed  PubMed Central  Google Scholar 

  118. Brown JR et al (2013) Phase 1 study of single agent CC-292, a highly selective Bruton’s tyrosine kinase (BTK) inhibitor, in relapsed/refractory chronic lymphocytic leukemia (CLL). Blood 122(21):1630. https://doi.org/10.1182/blood.V122.21.1630.1630

    Article  Google Scholar 

  119. Kaul M et al (2021) Remibrutinib (LOU064): a selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci 14(5):1756–1768. https://doi.org/10.1111/cts.13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Angst D et al (2020) Discovery of LOU064 (remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem 63(10):5102–5118. https://doi.org/10.1021/acs.jmedchem.9b01916

    Article  CAS  PubMed  Google Scholar 

  121. Park JK et al (2016) HM71224, a novel Bruton’s tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis. Arthritis Res Ther 18:91. https://doi.org/10.1186/s13075-016-0988-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Genovese MC et al (2021) Safety and efficacy of poseltinib, Bruton’s tyrosine kinase inhibitor, in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled, 2-part phase II study. J Rheumatol 48(7):969–976. https://doi.org/10.3899/jrheum.200893

    Article  CAS  PubMed  Google Scholar 

  123. Watterson SH et al (2019) Discovery of branebrutinib (BMS-986195): a strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of Bruton’s tyrosine kinase (BTK). J Med Chem 62(7):3228–3250. https://doi.org/10.1021/acs.jmedchem.9b00167

    Article  CAS  PubMed  Google Scholar 

  124. Catlett IM et al (2020) Safety, pharmacokinetics and pharmacodynamics of branebrutinib (BMS-986195), a covalent, irreversible inhibitor of Bruton’s tyrosine kinase: randomised phase I, placebo-controlled trial in healthy participants. Br J Clin Pharmacol 86(9):1849–1859. https://doi.org/10.1111/bcp.14290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Woyach JA et al (2022) Efficacy and safety of nemtabrutinib, a wild-type and C481S-mutated Bruton tyrosine kinase inhibitor for B-cell malignancies: updated analysis of the open-label phase 1/2 dose-expansion BELLWAVE-001 study. Blood 140(Supplement 1):7004–7006. https://doi.org/10.1182/blood-2022-163596

    Article  Google Scholar 

  126. Allan JN et al (2021) Phase Ib dose-escalation study of the selective, noncovalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies. Haematologica 107(4):984–987. https://doi.org/10.3324/haematol.2021.280061

    Article  PubMed Central  Google Scholar 

  127. Aslan B et al (2021) Vecabrutinib inhibits B-cell receptor signal transduction in chronic lymphocytic leukemia cell types with wild-type or mutant Bruton tyrosine kinase. Haematologica 107(1):292–297. https://doi.org/10.3324/haematol.2021.279158

    Article  CAS  PubMed Central  Google Scholar 

  128. Xu D et al (2012) RN486, a selective Bruton’s tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J Pharmacol Exp Ther 341(1):90–103. https://doi.org/10.1124/jpet.111.187740

    Article  CAS  PubMed  Google Scholar 

  129. Liu L et al (2011) Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor. Drug Metab Dispos Biol Fate Chem 39(10):1840–1849. https://doi.org/10.1124/dmd.111.040840

    Article  CAS  PubMed  Google Scholar 

  130. Di Paolo JA et al (2011) Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 7(1):41–50. https://doi.org/10.1038/nchembio.481

    Article  CAS  PubMed  Google Scholar 

  131. Byrd JC et al (2018) First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 9(16):13023–13035. https://doi.org/10.18632/oncotarget.24310

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fenebrutinib versus placebo or adalimumab in rheumatoid arthritis: a randomized, double‐blind, phase II trial - Cohen - 2020 - Arthritis & Rheumatology - Wiley Online Library Accessed: Oct. 07, 2024. [Online]. Available: https://acrjournals.onlinelibrary.wiley.com/doi/https://doi.org/10.1002/art.41275

  133. Tadmor T et al. (2024) BELLWAVE-011: phase 3 randomized trial of nemtabrutinib versus ibrutinib or acalabrutinib in untreated chronic lymphocytic leukemia/small lymphocytic lymphoma. J Clin Oncol. 42(16_suppl):TPS7088–TPS7088. https://doi.org/10.1200/JCO.2024.42.16_suppl.TPS7088.

  134. Song Y et al (2023) A novel dual covalent and non-covalent next generation inhibitor of Bruton’s tyrosine kinase LP-168 in patients with relapsed/refractory B cell non-Hodgkin lymphoma: safety and efficacy results from a phase 1 study. Blood 142(Supplement 1):4400–4400. https://doi.org/10.1182/blood-2023-180485

    Article  Google Scholar 

  135. Kawahata W et al (2021) Discovery of AS-1763: a potent, selective, noncovalent, and orally available inhibitor of Bruton’s tyrosine kinase. J Med Chem 64(19):14129–14141. https://doi.org/10.1021/acs.jmedchem.1c01279

    Article  CAS  PubMed  Google Scholar 

  136. Timofeeva N et al (2024) Impact of docirbrutinib (AS-1763) treatment in CLL: preclinical data and early clinical biomarkers. Blood 144(Supplement 1):1850–1850. https://doi.org/10.1182/blood-2024-210788

    Article  Google Scholar 

  137. Montoya S et al. (2024) Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science. 383(6682):eadi5798. https://doi.org/10.1126/science.adi5798.

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Life Sciences Research Board (LSRB), Defence Research and Development Organisation (DRDO), Government of India, for their financial support throughout this research. The authors are also thankful to MoE, India, for providing PhD fellowship to author Arpit Sharma.

Funding

LSRB, DRDO, India.

Author information

Authors and Affiliations

Authors

Contributions

Shivani Gupta: writing—original draft, writing—review and editing, conceptualization and investigation

Arpit Sharma: writing—review and editing, investigation, conceptualization.

Alok Shukla: writing—review and editing, investigation, conceptualization.

Amit Singh: writing—review and editing, supervision, conceptualization, and investigation.

Abha Mishra: writing—review and editing, supervision, conceptualization, and investigation.

Corresponding authors

Correspondence to Abha Mishra or Amit Singh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Sharma, A., Shukla, A. et al. From development to clinical success: the journey of established and next-generation BTK inhibitors. Invest New Drugs 43, 377–393 (2025). https://doi.org/10.1007/s10637-025-01513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-025-01513-y

Keywords