Summary
Over the past decade, Bruton’s tyrosine kinase (BTK) has emerged as a pivotal therapeutic target for B-cell malignancies and autoimmune diseases, given its essential role in B-cell development and function. Dysregulation of BTK signalling is implicated in a range of hematologic cancers, including Waldenström’s macroglobulinaemia (WM), mantle cell lymphoma (MCL), and chronic lymphocytic leukaemia (CLL). The development of BTK inhibitors (BTKIs), starting with ibrutinib, has revolutionized the treatment of these malignancies by inhibiting B-cell receptor (BCR) signalling and inducing apoptosis in malignant B-cells. Despite the impressive clinical efficacy of ibrutinib, challenges such as resistance mutations and off-target effects remain. To address these issues, next-generation BTKIs, including acalabrutinib, orelabrutinib, zanubrutinib, and pirtobrutinib, have been developed, offering improved specificity and reduced toxicity profiles. This review highlights the therapeutic potential of BTK-targeted therapies in treating B-cell malignancies, discusses recent advancements with FDA-approved BTKIs, and explores the latest clinical outcomes from ongoing trials of novel inhibitors.
Graphical Abstract



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Not applicable
References
Rawlings DJ, Witte ON (1994) Bruton’s tyrosine kinase is a key regulator in B-cell development. Immunol Rev 138(1):105–119. https://doi.org/10.1111/j.1600-065X.1994.tb00849.x
Smith CI, Islam TC, Mattsson PT, Mohamed AJ, Nore BF, Vihinen M (2001) The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species, BioEssays News Rev. Mol Cell Dev Biol 23(5):436–446. https://doi.org/10.1002/bies.1062
Wu H et al (2014) Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem Biol 9(5):1086–1091. https://doi.org/10.1021/cb4008524
Hagemann T., Kwan SP. (1993) A BstNI polymorphism at the BTK locus in Xq21.3 – Xq22 Hum Mol Genet. 2(12):2201. https://doi.org/10.1093/hmg/2.12.2201.
Vetrie D et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361(6409):226–233. https://doi.org/10.1038/361226a0
Bruton OC (1952) Agammaglobulinemia. Pediatrics 9(6):722–728. https://doi.org/10.1542/peds.9.6.722
Suri D, Rawat A, Singh S (2016) X-linked agammaglobulinemia. Indian J Pediatr 83(4):331–337. https://doi.org/10.1007/s12098-015-2024-8
Väliaho J, Smith CIE, Vihinen M (2006) BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat 27(12):1209–1217. https://doi.org/10.1002/humu.20410
Tsukada S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2):279–290. https://doi.org/10.1016/0092-8674(93)90667-f
Riggs J, Howell K, Matechin B, Matlack R, Pennello A, Chiasson R (2003) X-chromosome-linked immune-deficient mice have B-1b cells. Immunology 108(4):440–451. https://doi.org/10.1046/j.1365-2567.2003.01624.x
Liu X et al (2011) Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12(5):416–424. https://doi.org/10.1038/ni.2015
Quek LS, Bolen J, Watson SP (1998) A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 8(20):1137-S1. https://doi.org/10.1016/S0960-9822(98)70471-3
Honda F et al (2012) The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13(4):369–378. https://doi.org/10.1038/ni.2234
Genevier HC et al (1994) Expression of Bruton’s tyrosine kinase protein within the B cell lineage. Eur J Immunol 24(12):3100–3105. https://doi.org/10.1002/eji.1830241228
Katz FE et al (1994) Expression of the X-linked agammaglobulinemia gene, btk in B-cell acute lymphoblastic leukemia. Leukemia 8(4):574–577
Brullo C, Villa C, Tasso B, Russo E, Spallarossa A (2021) Btk inhibitors: a medicinal chemistry and drug delivery perspective. Int J Mol Sci 22(14):7641. https://doi.org/10.3390/ijms22147641
Manji F, Puckrin R, Stewart DA (2021) Novel synthetic drugs for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother 22(11):1417–1427. https://doi.org/10.1080/14656566.2021.1902988
Schmidt U, Boucheron N, Unger B, Ellmeier W (2004) The role of Tec family kinases in myeloid cells. Int Arch Allergy Immunol 134(1):65–78. https://doi.org/10.1159/000078339
Hyvönen M, Saraste M (1997) Structure of the PH domain and Btk motif from Bruton’s tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 16(12):3396–3404. https://doi.org/10.1093/emboj/16.12.3396
Várnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274(16):10983–10989. https://doi.org/10.1074/jbc.274.16.10983
Kang SW et al (2001) PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J 20(20):5692–5702. https://doi.org/10.1093/emboj/20.20.5692
Vihinen M, Nilsson L, Smith CI (1994) Tec homology (TH) adjacent to the PH domain. FEBS Lett 350(2–3):263–265. https://doi.org/10.1016/0014-5793(94)00783-7
Park H et al (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4(5):515–525. https://doi.org/10.1016/s1074-7613(00)80417-3
Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ (1997) Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A 94(21):11526–11533. https://doi.org/10.1073/pnas.94.21.11526
Pan Z et al (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61. https://doi.org/10.1002/cmdc.200600221
Bender AT et al (2017) Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol Pharmacol 91(3):208–219. https://doi.org/10.1124/mol.116.107037
Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CI (2000) Nucleocytoplasmic shuttling of Bruton’s tyrosine kinase. J Biol Chem 275(51):40614–40619. https://doi.org/10.1074/jbc.M006952200
Li T, Rawlings DJ, Park H, Kato RM, Witte ON, Satterthwaite AB (1997) Constitutive membrane association potentiates activation of Bruton tyrosine kinase. Oncogene 15(12):1375–1383. https://doi.org/10.1038/sj.onc.1201308
Li Z, Wahl MI, Eguinoa A, Stephens LR, Hawkins PT, Witte ON (1997) Phosphatidylinositol 3-kinase-γ activates Bruton’s tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A 94(25):13820–13825
Jiang A, Craxton A, Kurosaki T, Clark EA (1998) Different protein tyrosine kinases are required for B cell antigen receptor–mediated activation of extracellular signal–regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J Exp Med 188(7):1297–1306
Petro JB, Rahman SMJ, Ballard DW, Khan WN (2000) Bruton’s tyrosine kinase is required for activation of Iκb kinase and nuclear factor κb in response to B cell receptor engagement. J Exp Med 191(10):1745–1754
Hart JR, Liao L, Yates JR, Vogt PK (2011) Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc Natl Acad Sci 108(32):13247–13252. https://doi.org/10.1073/pnas.1110486108
Hayakawa K et al (2019) Crucial role of increased Arid3a at the pre-B and immature B cell stages for B1a cell generation. Front Immunol 10:457. https://doi.org/10.3389/fimmu.2019.00457
Yang W, Desiderio S (1997) BAP-135, a target for Bruton’s tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci U S A 94(2):604–609
Anderson JS, Teutsch M, Dong Z, Wortis HH (1996) An essential role for Bruton’s [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci U S A 93(20):10966–10971. https://doi.org/10.1073/pnas.93.20.10966
Kil LP et al (2012) Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119(16):3744–3756. https://doi.org/10.1182/blood-2011-12-397919
Aoki Y, Isselbacher KJ, Pillai S (1994) Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A 91(22):10606–10609. https://doi.org/10.1073/pnas.91.22.10606
de Weers M et al (1994) B-cell antigen receptor stimulation activates the human Bruton’s tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem 269(39):23857–23860. https://doi.org/10.1016/S0021-9258(19)51014-6
Hendriks RW, Middendorp S (2004) The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol 25(5):249–256. https://doi.org/10.1016/j.it.2004.02.011
Tkachenko A, Kupcova K, Havranek O (2023) B-cell receptor signaling and beyond: the role of Igα (CD79a)/Igβ (CD79b) in normal and malignant B cells. Int J Mol Sci 25(1):10. https://doi.org/10.3390/ijms25010010
Schmid VK, Hobeika E (2024) B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front Oncol 14:1339620. https://doi.org/10.3389/fonc.2024.1339620
DeLuca JM, Murphy MK, Wang X, Wilson TJ (2021) FCRL1 regulates B cell receptor–induced ERK activation through GRB2. J Immunol 207(11):2688–2698. https://doi.org/10.4049/jimmunol.2100218
Saito K, Scharenberg AM, Kinet JP (2001) Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem 276(19):16201–16206. https://doi.org/10.1074/jbc.M100873200
Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG (2004) Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol Cell Biol 24(22):9986–9999. https://doi.org/10.1128/MCB.24.22.9986-9999.2004
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W (2021) The role of Ca2+/calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 54(11):e13122. https://doi.org/10.1111/cpr.13122
Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH (2000) Bruton’s tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med 191(10):1735–1744. https://doi.org/10.1084/jem.191.10.1735
Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001
Hashimoto A et al (1998) Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 188(7):1287–1295. https://doi.org/10.1084/jem.188.7.1287
Ren L et al (2016) Analysis of the effects of the Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib on monocyte Fcγ receptor (FcγR) function *. J Biol Chem 291(6):3043–3052. https://doi.org/10.1074/jbc.M115.687251
Doyle SL, Jefferies CA, Feighery C, O’Neill LAJ (2007) Signaling by Toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem 282(51):36953–36960. https://doi.org/10.1074/jbc.M707682200
Spaargaren M et al (2003) The B cell antigen receptor controls integrin activity through Btk and PLCγ2. J Exp Med 198(10):1539–1550. https://doi.org/10.1084/jem.20011866
Mueller H et al (2010) Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways. Blood 115(15):3118–3127. https://doi.org/10.1182/blood-2009-11-254185
Satterthwaite AB, Witte ON (2000) The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev 175:120–127
Sharma S, Orlowski G, Song W. (2009) Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells,” J. Immunol. Baltim. Md 1950 182(1):329–339 https://doi.org/10.4049/jimmunol.182.1.329
Herishanu Y et al (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2):563–574. https://doi.org/10.1182/blood-2010-05-284984
Singh SP et al (2017) Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signalling. Oncotarget 8(42):71981–71995. https://doi.org/10.18632/oncotarget.18234
de Rooij MFM et al (2012) The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119(11):2590–2594. https://doi.org/10.1182/blood-2011-11-390989
Ponader S et al (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5):1182–1189. https://doi.org/10.1182/blood-2011-10-386417
Cheah CY, Seymour JF, Wang ML (2016) Mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 34(11):1256–1269. https://doi.org/10.1200/JCO.2015.63.5904
Cinar M, Hamedani F, Mo Z, Cinar B, Amin HM, Alkan S (2013) Bruton tyrosine kinase is commonly overexpressed in mantle cell lymphoma and its attenuation by ibrutinib induces apoptosis. Leuk Res 37(10):1271–1277. https://doi.org/10.1016/j.leukres.2013.07.028
Pighi C et al (2011) Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol Dordr Neth 34(2):141–153. https://doi.org/10.1007/s13402-011-0019-7
Alizadeh AA et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511. https://doi.org/10.1038/35000501
Chang BY et al (2013) Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood 122(14):2412–2424. https://doi.org/10.1182/blood-2013-02-482125
Iqbal J et al (2015) Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 125(7):1137–1145. https://doi.org/10.1182/blood-2014-04-566778
Janz S (2013) Waldenström macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN Hematol 2013:815325. https://doi.org/10.1155/2013/815325
Feng Y, Duan W, Cu X, Liang C, Xin M (2019) Bruton’s tyrosine kinase (BTK) inhibitors in treating cancer: a patent review (2010–2018). Expert Opin Ther Pat 29(4):217–241. https://doi.org/10.1080/13543776.2019.1594777
Hunter ZR et al (2014) The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 123(11):1637–1646. https://doi.org/10.1182/blood-2013-09-525808
Ngo HT et al (2008) SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 112(1):150–158. https://doi.org/10.1182/blood-2007-12-129395
Elbezanti WO et al. (2022) Development of a novel Bruton’s tyrosine kinase inhibitor that exerts anti-cancer activities potentiates response of chemotherapeutic agents in multiple myeloma stem cell-like cells. Front Pharmacol. 13. https://doi.org/10.3389/fphar.2022.894535.
Yang Y et al (2015) Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma. Cancer Res 75(3):594–604. https://doi.org/10.1158/0008-5472.CAN-14-2362
Tai Y-T et al (2012) Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 120(9):1877–1887. https://doi.org/10.1182/blood-2011-12-396853
Young WB et al (2015) Potent and selective Bruton’s tyrosine kinase inhibitors: discovery of GDC-0834. Bioorg Med Chem Lett 25(6):1333–1337. https://doi.org/10.1016/j.bmcl.2015.01.032
Yan Q et al (2012) BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica 97(4):595–598. https://doi.org/10.3324/haematol.2011.054080
Mahajan S et al (1999) Rational design and synthesis of a novel anti-leukemic agent targeting Bruton’s tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 274(14):9587–9599. https://doi.org/10.1074/jbc.274.14.9587
Bernal A et al (2001) Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood 98(10):3050–3057. https://doi.org/10.1182/blood.v98.10.3050
Estupiñán HY, Berglöf A, Zain R, Smith CIE (2021) Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev Biol 9:630942. https://doi.org/10.3389/fcell.2021.630942
Tasso B, Spallarossa A, Russo E, Brullo C. (2021) The development of BTK inhibitors: a five-year update. Molecules, 26(23). https://doi.org/10.3390/molecules26237411.
de Claro RA et al. (2015) FDA approval: ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukaemia. Clin Cancer Res Off. J Am Assoc Cancer Res. 21(16):3586–3590 https://doi.org/10.1158/1078-0432.CCR-14-2225
Byrd JC et al (2016) Acalabrutinib (ACP-196) in Relapsed chronic lymphocytic leukemia. N Engl J Med 374(4):323–332. https://doi.org/10.1056/NEJMoa1509981
Tam CS et al (2019) Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood 134(11):851–859. https://doi.org/10.1182/blood.2019001160
C. for D. E. and Research, FDA grants accelerated approval to zanubrutinib for relapsed or refractory follicular lymphoma, FDA, Aug. 2024, Accessed: Aug. 13, 2024. [Online]. Available: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zanubrutinib-relapsed-or-refractory-follicular-lymphoma
Tam CS et al. (2020) A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study”, https://doi.org/10.1182/blood.2020006844.
Brown JR et al (2023) Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 388(4):319–332. https://doi.org/10.1056/NEJMoa2211582
Dhillon S (2020) Tirabrutinib: first approval. Drugs 80(8):835–840. https://doi.org/10.1007/s40265-020-01318-8
YH et al. (2024) Three-year follow-up analysis of phase 1/2 study on tirabrutinib in patients with relapsed or refractory primary central nervous system lymphoma,” Neuro-Oncol. Adv. 6(1). https://doi.org/10.1093/noajnl/vdae037.
Narita Y et al (2021) Phase I/II study of tirabrutinib, a second-generation Bruton’s tyrosine kinase inhibitor, in relapsed/refractory primary central nervous system lymphoma. Neuro-Oncol 23(1):122–133. https://doi.org/10.1093/neuonc/noaa145
Xu W et al (2021) Orelabrutinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: updated long term results of phase II study. Blood 138:2638. https://doi.org/10.1182/blood-2021-146491
Deng L-J et al (2023) Orelabrutinib for the treatment of relapsed or refractory MCL: a phase 1/2, open-label, multicenter, single-arm study. Blood Adv 7(16):4349–4357. https://doi.org/10.1182/bloodadvances.2022009168
Press Release | INNOCARE. Accessed: Oct. 06, 2024. [Online]. Available: https://www.innocarepharma.com/en/investor/news
Dhillon S (2021) Orelabrutinib: first approval. Drugs 81(4):503–507. https://doi.org/10.1007/s40265-021-01482-5
Keam SJ (2023) Pirtobrutinib: first approval. Drugs 83(6):547–553. https://doi.org/10.1007/s40265-023-01860-1
Wang ML et al (2023) Pirtobrutinib in covalent Bruton tyrosine kinase inhibitor pretreated mantle-cell lymphoma. J Clin Oncol 41(24):3988–3997. https://doi.org/10.1200/JCO.23.00562
Mato AR et al (2023) Pirtobrutinib after a covalent BTK inhibitor in chronic lymphocytic leukemia. N Engl J Med 389(1):33–44. https://doi.org/10.1056/NEJMoa2300696
Wang E et al (2022) Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N Engl J Med 386(8):735–743. https://doi.org/10.1056/NEJMoa2114110
Davids MS, Brown JR (2014) Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol Lond Engl 10(6):957–967. https://doi.org/10.2217/fon.14.51
Honigberg LA et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 107(29):13075–13080. https://doi.org/10.1073/pnas.1004594107
Herman SEM et al (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117(23):6287–6296. https://doi.org/10.1182/blood-2011-01-328484
Wang ML et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369(6):507–516. https://doi.org/10.1056/NEJMoa1306220
Byrd JC et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369(1):32–42. https://doi.org/10.1056/NEJMoa1215637
Sharma A, Raut SS, Dhikale P, Khushboo, Mishra A. (2024) Navigating the landscape of cancer-induced thrombocytopenia: current challenges and emerging advances,” in Industrial microbiology and biotechnology, P. Verma, Ed., Singapore: Springer Nature Singapore, 435–463. https://doi.org/10.1007/978-981-97-6270-5_14.
Munir T et al (2019) Final analysis from RESONATE: up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol 94(12):1353–1363. https://doi.org/10.1002/ajh.25638
“IMBRUVICA® (ibrutinib) Approved by U.S. FDA for the first-line treatment of chronic lymphocytic leukemia,” AbbVie News Center. Accessed: Jan. 28, 2025. [Online]. Available: https://news.abbvie.com/2016-03-04-IMBRUVICA-ibrutinib-Approved-by-U-S-FDA-for-the-First-line-Treatment-of-Chronic-Lymphocytic-Leukemia
Burger J et al (2024) CLL-076 final analysis of the RESONATE-2 study: up to 10 years of follow-up of first-line ibrutinib treatment in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Clin Lymphoma Myeloma Leuk 24:S342–S343. https://doi.org/10.1016/S2152-2650(24)01259-X
Awan FT et al (2024) Single-agent ibrutinib versus allogeneic hematopoietic cell transplantation for patients with relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma and del(17p). Blood 144(Supplement 1):2178–2178. https://doi.org/10.1182/blood-2024-194156
Advani RH et al (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol Off J Am Soc Clin Oncol 31(1):88–94. https://doi.org/10.1200/JCO.2012.42.7906
“Update on IMBRUVICA® (ibrutinib) U.S. accelerated approvals for mantle cell lymphoma and marginal zone lymphoma indications,” JNJ.com. Accessed: Oct. 06, 2024. [Online]. Available: https://www.jnj.com/media-center/press-releases/update-on-imbruvica-ibrutinib-u-s-accelerated-approvals-for-mantle-cell-lymphoma-and-marginal-zone-lymphoma-indications
Wen T, Wang J, Shi Y, Qian H, Liu P (2021) Inhibitors targeting Bruton’s tyrosine kinase in cancers: drug development advances. Leukemia 35(2):312–332. https://doi.org/10.1038/s41375-020-01072-6
Wu J, Zhang M, Liu D. (2016) Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol.J Hematol Oncol. 9(21). https://doi.org/10.1186/s13045-016-0250-9.
Byrd JC et al (2021) Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol 39(31):3441–3452. https://doi.org/10.1200/JCO.21.01210
Thompson PA, Tam CS (2023) Pirtobrutinib: a new hope for patients with BTK inhibitor–refractory lymphoproliferative disorders. Blood 141(26):3137–3142. https://doi.org/10.1182/blood.2023020240
Blombery P et al (2022) Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: potential for pirtobrutinib cross-resistance. Blood Adv 6(20):5589–5592. https://doi.org/10.1182/bloodadvances.2022008325
Isenberg D et al (2021) Efficacy, safety, and pharmacodynamic effects of the Bruton’s tyrosine kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: results of a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol 73(10):1835–1846. https://doi.org/10.1002/art.41811
Caldwell RD et al (2019) Discovery of evobrutinib: an oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J Med Chem 62(17):7643–7655. https://doi.org/10.1021/acs.jmedchem.9b00794
Haselmayer P et al. (2019) Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J Immunol Baltim. Md 1950 202(10):2888–2906. https://doi.org/10.4049/jimmunol.1800583.
Kuter DJ et al (2021) LUNA3 phase III multicenter, double-blind, randomized, placebo-controlled trial of the oral BTK inhibitor rilzabrutinib in adults and adolescents with persistent or chronic immune thrombocytopenia. Blood 138:1010. https://doi.org/10.1182/blood-2021-144504
Reich DS et al (2021) Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 20(9):729–738. https://doi.org/10.1016/S1474-4422(21)00237-4
Brown JR et al (2016) Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica 101(7):e295–e298. https://doi.org/10.3324/haematol.2015.140806
Brown JR et al (2013) Phase 1 study of single agent CC-292, a highly selective Bruton’s tyrosine kinase (BTK) inhibitor, in relapsed/refractory chronic lymphocytic leukemia (CLL). Blood 122(21):1630. https://doi.org/10.1182/blood.V122.21.1630.1630
Kaul M et al (2021) Remibrutinib (LOU064): a selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci 14(5):1756–1768. https://doi.org/10.1111/cts.13005
Angst D et al (2020) Discovery of LOU064 (remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem 63(10):5102–5118. https://doi.org/10.1021/acs.jmedchem.9b01916
Park JK et al (2016) HM71224, a novel Bruton’s tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis. Arthritis Res Ther 18:91. https://doi.org/10.1186/s13075-016-0988-z
Genovese MC et al (2021) Safety and efficacy of poseltinib, Bruton’s tyrosine kinase inhibitor, in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled, 2-part phase II study. J Rheumatol 48(7):969–976. https://doi.org/10.3899/jrheum.200893
Watterson SH et al (2019) Discovery of branebrutinib (BMS-986195): a strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of Bruton’s tyrosine kinase (BTK). J Med Chem 62(7):3228–3250. https://doi.org/10.1021/acs.jmedchem.9b00167
Catlett IM et al (2020) Safety, pharmacokinetics and pharmacodynamics of branebrutinib (BMS-986195), a covalent, irreversible inhibitor of Bruton’s tyrosine kinase: randomised phase I, placebo-controlled trial in healthy participants. Br J Clin Pharmacol 86(9):1849–1859. https://doi.org/10.1111/bcp.14290
Woyach JA et al (2022) Efficacy and safety of nemtabrutinib, a wild-type and C481S-mutated Bruton tyrosine kinase inhibitor for B-cell malignancies: updated analysis of the open-label phase 1/2 dose-expansion BELLWAVE-001 study. Blood 140(Supplement 1):7004–7006. https://doi.org/10.1182/blood-2022-163596
Allan JN et al (2021) Phase Ib dose-escalation study of the selective, noncovalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies. Haematologica 107(4):984–987. https://doi.org/10.3324/haematol.2021.280061
Aslan B et al (2021) Vecabrutinib inhibits B-cell receptor signal transduction in chronic lymphocytic leukemia cell types with wild-type or mutant Bruton tyrosine kinase. Haematologica 107(1):292–297. https://doi.org/10.3324/haematol.2021.279158
Xu D et al (2012) RN486, a selective Bruton’s tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J Pharmacol Exp Ther 341(1):90–103. https://doi.org/10.1124/jpet.111.187740
Liu L et al (2011) Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor. Drug Metab Dispos Biol Fate Chem 39(10):1840–1849. https://doi.org/10.1124/dmd.111.040840
Di Paolo JA et al (2011) Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 7(1):41–50. https://doi.org/10.1038/nchembio.481
Byrd JC et al (2018) First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 9(16):13023–13035. https://doi.org/10.18632/oncotarget.24310
Fenebrutinib versus placebo or adalimumab in rheumatoid arthritis: a randomized, double‐blind, phase II trial - Cohen - 2020 - Arthritis & Rheumatology - Wiley Online Library Accessed: Oct. 07, 2024. [Online]. Available: https://acrjournals.onlinelibrary.wiley.com/doi/https://doi.org/10.1002/art.41275
Tadmor T et al. (2024) BELLWAVE-011: phase 3 randomized trial of nemtabrutinib versus ibrutinib or acalabrutinib in untreated chronic lymphocytic leukemia/small lymphocytic lymphoma. J Clin Oncol. 42(16_suppl):TPS7088–TPS7088. https://doi.org/10.1200/JCO.2024.42.16_suppl.TPS7088.
Song Y et al (2023) A novel dual covalent and non-covalent next generation inhibitor of Bruton’s tyrosine kinase LP-168 in patients with relapsed/refractory B cell non-Hodgkin lymphoma: safety and efficacy results from a phase 1 study. Blood 142(Supplement 1):4400–4400. https://doi.org/10.1182/blood-2023-180485
Kawahata W et al (2021) Discovery of AS-1763: a potent, selective, noncovalent, and orally available inhibitor of Bruton’s tyrosine kinase. J Med Chem 64(19):14129–14141. https://doi.org/10.1021/acs.jmedchem.1c01279
Timofeeva N et al (2024) Impact of docirbrutinib (AS-1763) treatment in CLL: preclinical data and early clinical biomarkers. Blood 144(Supplement 1):1850–1850. https://doi.org/10.1182/blood-2024-210788
Montoya S et al. (2024) Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science. 383(6682):eadi5798. https://doi.org/10.1126/science.adi5798.
Acknowledgements
The authors would like to express their sincere gratitude to the Life Sciences Research Board (LSRB), Defence Research and Development Organisation (DRDO), Government of India, for their financial support throughout this research. The authors are also thankful to MoE, India, for providing PhD fellowship to author Arpit Sharma.
Funding
LSRB, DRDO, India.
Author information
Authors and Affiliations
Contributions
Shivani Gupta: writing—original draft, writing—review and editing, conceptualization and investigation
Arpit Sharma: writing—review and editing, investigation, conceptualization.
Alok Shukla: writing—review and editing, investigation, conceptualization.
Amit Singh: writing—review and editing, supervision, conceptualization, and investigation.
Abha Mishra: writing—review and editing, supervision, conceptualization, and investigation.
Corresponding authors
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gupta, S., Sharma, A., Shukla, A. et al. From development to clinical success: the journey of established and next-generation BTK inhibitors. Invest New Drugs 43, 377–393 (2025). https://doi.org/10.1007/s10637-025-01513-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10637-025-01513-y