Skip to main content

Advertisement

Log in

In vitro selection of DNA aptamers against human osteosarcoma

  • Short Report
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background. Osteosarcoma is a highly malignant bone tumor, most frequently occurring in the rapid bone growth phase. Effective treatment of this disease is hindered by the lack of specific probes for early diagnosis and the fast cancer widespread. Methods. To find such probes, the cell-Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) methodology was implemented against the human osteosarcoma MG-63 cell line towards the selection of new specific aptamers. After 10 rounds of selection, the aptamer DNA pool was Sanger sequenced and the sequences were subjected to a bioinformatic analysis that included sequence alignment, phylogenetic relationship, and secondary structure prediction. Results. A DNA aptamer (OS-7.9), with a dissociation constant (Kd) value in the nanomolar range (12.8 ± 0.9 nM), revealed high affinity against the target cells at the physiological temperature. Furthermore, the selected aptamer also recognized lung carcinoma and colon colorectal adenocarcinoma cell lines, which are reported as common metastasis sites of osteosarcoma. Conclusions. These results suggest that OS-7.9 could recognize a common protein expressed in these cancer cells, possibly becoming a potential molecular probe for early diagnosis and targeted therapies for metastatic disease. Moreover, to the best of our knowledge, this was the first attempt to generate a DNA aptamer (OS-7.9 aptamer) against the MG-63-cell line by cell-SELEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAR-T:

Chimeric antigen receptor T

BSA:

Bovine serum albumine

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s Modified Eagle Medium

DG2:

Disialoganglioside

FBS:

Fetal Bovine Serum

\({{{K}}}_{{{d}}}\) :

Dissociation constant

mAb:

Monoclonal antibody

OS:

Osteosarcoma

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

RNA:

Ribonucleic acid

SD:

Standard deviation

SELEX:

Systematic Evolution of Ligands by EXponential Enrichment

SL:

Stem-loop

ssDNA:

Single-stranded deoxyribonucleic acid

VEGF:

Vascular endothelial growth factor

WB:

Washing buffer

References

  1. Gaspar N, Marques da Costa ME, Fromigue O et al (2020) Recent advances in understanding osteosarcoma and emerging therapies. Fac Rev 9. https://doi.org/10.12703/r/9-18

  2. Taran S, Taran R, Malipatil N (2017) Pediatric osteosarcoma: An updated review. Indian J Med Paediatr Oncol 38:33. https://doi.org/10.4103/0971-5851.203513

    Article  PubMed  PubMed Central  Google Scholar 

  3. Staddon AP, Lackman R, Robinson K et al (2002) Osteogenic Sarcoma Presenting with Lung Metastasis. Oncologist 7:144–153. https://doi.org/10.1634/theoncologist.7-2-144

    Article  PubMed  Google Scholar 

  4. Lamplot J, Denduluri S, Qin J et al (2013) The Current and Future Therapies for Human Osteosarcoma. Curr Cancer Ther Rev 9:55–77. https://doi.org/10.2174/1573394711309010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kansara M, Teng MW, Smyth MJ, Thomas DM (2014) Translational biology of osteosarcoma. Nat Rev Cancer 14:722–735. https://doi.org/10.1038/nrc3838

    Article  CAS  PubMed  Google Scholar 

  6. Yan G-N, Lv Y-F, Guo Q-N (2016) Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets. Cancer Lett 370:268–274. https://doi.org/10.1016/j.canlet.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: Current potential and challenges. Nat Rev Drug Discov 16:181–202. https://doi.org/10.1038/nrd.2016.199

    Article  CAS  PubMed  Google Scholar 

  8. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. https://doi.org/10.1016/j.bioeng.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  9. Zhong Y, Zhao J, Chen F (2020) Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 113620 https://doi.org/10.1016/j.ab.2020.113620

  10. Dupont DM, Larsen N, Jensen JK et al (2015) Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools. Nucleic Acids Res 43:e139. https://doi.org/10.1093/nar/gkv700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lao Y-H, Phua KKL, Leong KW (2015) Aptamer Nanomedicine for Cancer Therapeutics: Barriers and Potential for Translation. ACS Nano 9:2235–2254. https://doi.org/10.1021/nn507494p

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Li N, Gorenstein DG (2011) Strategies for the discovery of therapeutic aptamers. Expert Opin Drug Discov 6:75–87. https://doi.org/10.1517/17460441.2011.537321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sefah K, Shangguan D, Xiong X et al (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185. https://doi.org/10.1038/nprot.2010.66

    Article  CAS  PubMed  Google Scholar 

  14. Zhong Y, Zhao J, Li J et al (2020) Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 598:113620. https://doi.org/10.1016/j.ab.2020.113620

    Article  CAS  PubMed  Google Scholar 

  15. Chen M, Yu Y, Jiang F et al (2016) Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and Therapy. Int J Mol Sci 17:2079. https://doi.org/10.3390/ijms17122079

    Article  CAS  PubMed Central  Google Scholar 

  16. Ferreira D, Barbosa J, Sousa DA et al (2021) Selection of aptamers against triple negative breast cancer cells using high throughput sequencing. Sci Rep 11:8614. https://doi.org/10.1038/s41598-021-87998-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Liang J, Ma Y et al (2015) Identification of a novel molecular probe for recognition of human osteosarcoma cell using the cell-SELEX method. Int J Clin Exp Med 8:18151–18157

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  19. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sullivan R, Adams MC, Naik RR, Milam VT (2019) Analyzing Secondary Structure Patterns in DNA Aptamers Identified via CompELS. Molecules 24:1572. https://doi.org/10.3390/molecules24081572

    Article  CAS  PubMed Central  Google Scholar 

  21. Luetke A, Meyers PA, Lewis I, Juergens H (2014) Osteosarcoma treatment - Where do we stand? A state of the art review. Cancer Treat Rev 40:523–532

    Article  Google Scholar 

  22. Wedekind MF, Wagner LM, Cripe TP (2018) Immunotherapy for osteosarcoma: Where do we go from here? Pediatr Blood Cancer 65:e27227. https://doi.org/10.1002/pbc.27227

    Article  PubMed  Google Scholar 

  23. Köksal H, Müller E, Inderberg EM et al (2019) Treating osteosarcoma with CAR T cells. Scand J Immunol 89:e12741. https://doi.org/10.1111/sji.12741

    Article  PubMed  Google Scholar 

  24. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11:69. https://doi.org/10.1038/s41408-021-00459-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roth M, Linkowski M, Tarim J et al (2014) Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer 120:548–554. https://doi.org/10.1002/cncr.28461

    Article  CAS  PubMed  Google Scholar 

  26. Poon VI, Roth M, Piperdi S et al (2015) Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin Sarcoma Res 5:4. https://doi.org/10.1186/s13569-014-0020-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. https://doi.org/10.1038/nrd3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guedes JP, Pereira CS, Rodrigues LR, Côrte-Real M (2018) Bovine Milk Lactoferrin Selectively Kills Highly Metastatic Prostate Cancer PC-3 and Osteosarcoma MG-63 Cells In Vitro. Front Oncol 8. https://doi.org/10.3389/fonc.2018.00200

  29. Hung LY, Wang CH, Che YJ et al (2015) Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing On-chip Cell-SELEX. Sci Rep 5:1–12. https://doi.org/10.1038/srep10326

    Article  Google Scholar 

  30. Wang L, Li P, Xiao X et al (2018) Generating lung-metastatic osteosarcoma targeting aptamers for in vivo and clinical tissue imaging. Talanta 188:66–73. https://doi.org/10.1016/j.talanta.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  31. Lyu Y, Chen G, Shangguan D et al (2016) Generating cell targeting aptamers for nanotheranostics using cell-SELEX. Theranostics 6:1440–1452. https://doi.org/10.7150/thno.15666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shangguan D, Li Y, Tang Z et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843. https://doi.org/10.1073/pnas.0602615103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sefah K, Tang ZW, Shangguan DH et al (2009) Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23:235–244. https://doi.org/10.1038/leu.2008.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meazza C, Scanagatta P (2016) Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev Anticancer Ther 16:543–556

    Article  CAS  Google Scholar 

  35. Pratap S, Pokala HR, Meyer WH et al (2017) Diffuse Marrow Involvement in Metastatic Osteosarcoma: An Unusual Presentation. J Oncol Pract 13:401–403. https://doi.org/10.1200/JOP.2016.018507

    Article  PubMed  Google Scholar 

  36. Costa A, Fustaino L, Mosca F (2001) Metastatic osteosarcoma involving the colon and ileum. Gastrointest Endosc 54:75. https://doi.org/10.1067/mge.2001.116175

    Article  CAS  PubMed  Google Scholar 

  37. Serpico R, Brown J, Blank A et al (2021) Metastasis of Osteosarcoma to the Abdomen: A Report of Two Cases and a Review of the Literature. Case Rep Oncol 14:647–658. https://doi.org/10.1159/000515195

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kokkali S, Andriotis E, Katsarou E et al (2020) Cerebral metastasis from osteosarcoma: “Bone” in the brain. Radiol Case Reports 15:780–783. https://doi.org/10.1016/j.radcr.2020.03.020

    Article  Google Scholar 

  39. Yu W-X, Yao Y (2009) Metastatic osteosarcoma to the liver and the kidney: a case report and review of the literature. Case Reports 2009:bcr0720080536–bcr0720080536. https://doi.org/10.1136/bcr.07.2008.0536

  40. de Franciscis V (2014) A Theranostic, “SMART” Aptamer for Targeted Therapy of Prostate Cancer. Mol Ther 22:1886–1888. https://doi.org/10.1038/mt.2014.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee YJ, Han SR, Kim NY et al (2012) An RNA Aptamer That Binds Carcinoembryonic Antigen Inhibits Hepatic Metastasis of Colon Cancer Cells in Mice. Gastroenterology 143:155-165.e8. https://doi.org/10.1053/j.gastro.2012.03.039

    Article  CAS  PubMed  Google Scholar 

  42. Liang C, Li F, Wang L et al (2017) Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 147:68–85. https://doi.org/10.1016/j.biomaterials.2017.09.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Hacettepe University Scientific Research Projects Coordination Unit (project no. FHD-2018–17245) and by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020unit. Diana A. Sousa (DAS) acknowledge FCT for the grant PD/BD/139083/2018. Débora Ferreira (DF) is recipient of a fellowship supported by a doctoral advanced training (call NORTE-69–2015-15) funded by the European Social Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Contributions

LR conceived the study. DF, AT, KT and DAS performed the experiments. KT, DAS, DF, AT, LR and ECA analyzed the data and wrote the manuscript. LR, ECA, HMA and DF provided suggestions on the experimental design. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Ligia Rodrigues.

Ethics declarations

Conflict of interests

The authors declare no financial competing interests. The authors have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5454 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsogtbaatar, K., Sousa, D.A., Ferreira, D. et al. In vitro selection of DNA aptamers against human osteosarcoma. Invest New Drugs 40, 172–181 (2022). https://doi.org/10.1007/s10637-021-01161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-021-01161-y

Keywords

Navigation