Skip to main content

Advertisement

Log in

Combined anticancer effects of sphingosine kinase inhibitors and sorafenib

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The pro-apoptotic lipid sphingosine is phosphorylated by sphingosine kinases 1 and 2 (SK1 and SK2) to generate the mitogenic lipid sphingosine-1-phosphate (S1P). We previously reported that inhibition of SK activity delays tumor growth in a mouse mammary adenocarcinoma model. Because SK inhibitors and the multikinase inhibitor sorafenib both suppress the MAP kinase pathway, we hypothesized that their combination may provide enhanced inhibition of tumor growth. Therefore, we evaluated the effects of two SK inhibitors, ABC294640 (a SK2-specific inhibitor) and ABC294735 (a dual SK1/SK2 inhibitor), alone and in combination with sorafenib on human pancreatic adenocarcinoma (Bxpc-3) and kidney carcinoma (A-498) cells in vitro and in vivo. Exposure of either Bxpc-3 or A-498 cells to combinations of ABC294640 and sorafenib or ABC294735 and sorafenib resulted in synergistic cytotoxicity, associated with activation of caspases 3/7 and DNA fragmentation. Additionally, strong decreases in ERK phosphorylation were observed in Bxpc-3 and A-498 cells exposed to either the sorafenib/ABC294640 or the sorafenib/ABC294735 combination. Oral administration of either ABC294640 or ABC294735 to mice led to a delay in tumor growth in both xenograft models without overt toxicity to the animals. Tumor growth delay was potentiated by co-administration of sorafenib. These studies show that combination of an SK inhibitor with sorafenib causes synergistic inhibition of cell growth in vitro, and potentiates antitumor activity in vivo. Thus, a foundation is established for clinical trials evaluating the efficacy of combining these signaling inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kessler T, Bayer M, Schwoppe C, Liersch R, Mesters RM, Berdel WE (2010) Compounds in clinical Phase III and beyond. Recent Results Cancer Res 180:137–163

    Article  PubMed  CAS  Google Scholar 

  2. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  PubMed  CAS  Google Scholar 

  3. Tani M, Ito M, Igarashi Y (2007) Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19:229–237

    Article  PubMed  CAS  Google Scholar 

  4. Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D (2007) Regulation and functional roles of sphingosine kinases. Naunyn-Schmiedeberg’s Arch Pharmacol 374:413–428

    Article  CAS  Google Scholar 

  5. Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM, Ogretmen B (2007) Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 282:10922–10934

    Article  PubMed  CAS  Google Scholar 

  6. Le Scolan E, Pchejetski D, Banno Y, Denis N, Mayeux P, Vainchenker W, Levade T, Moreau-Gachelin F (2005) Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 106:1808–1816

    Article  PubMed  Google Scholar 

  7. Safadi-Chamberlain F, Wang LP, Payne SG, Lim CU, Stratford S, Chavez JA, Fox MH, Spiegel S, Summers SA (2005) Effect of a membrane-targeted sphingosine kinase 1 on cell proliferation and survival. Biochem J 388:827–834

    Article  PubMed  CAS  Google Scholar 

  8. Sarkar S, Maceyka M, Hait NC, Paugh SW, Sankala H, Milstien S, Spiegel S (2005) Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett 579:5313–5317

    Article  PubMed  CAS  Google Scholar 

  9. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK, Smith CD (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962–5969

    PubMed  CAS  Google Scholar 

  10. French KJ, Upson JJ, Keller SN, Zhuang Y, Yun JK, Smith CD (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318:596–603

    Article  PubMed  CAS  Google Scholar 

  11. French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V, Upson JJ, Green CL, Keller SN, Smith CD (2010) Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333:129–139

    Article  PubMed  CAS  Google Scholar 

  12. Maines LW, French KJ, Wolpert EB, Antonetti DA, Smith CD (2006) Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: implications for angiogenic ocular diseases. Invest Ophthalmol Vis Sci 47:5022–5031

    Article  PubMed  Google Scholar 

  13. Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F (2009) Ras signaling and therapies. Adv Cancer Res 102:1–17

    Article  PubMed  CAS  Google Scholar 

  14. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5:835–844

    Article  PubMed  CAS  Google Scholar 

  15. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    Article  PubMed  CAS  Google Scholar 

  16. Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP (2005) Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65:2412–2421

    Article  PubMed  CAS  Google Scholar 

  17. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  18. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  19. Beljanski V, Knaak C, Smith CD. A novel sphingosine kinase inhibitor induces autophagy in tumor cells. J Pharmacol Exp Ther 333:454-464

  20. Juang SH, Lung CC, Hsu PC, Hsu KS, Li YC, Hong PC, Shiah HS, Kuo CC, Huang CW, Wang YC, Huang L, Chen TS, Chen SF, Fu KC, Hsu CL, Lin MJ, Chang CJ, Ashendel CL, Chan TC, Chou KM, Chang JY (2007) D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Mol Cancer Ther 6:193–202

    Article  PubMed  CAS  Google Scholar 

  21. Van Quaquebeke E, Mahieu T, Dumont P, Dewelle J, Ribaucour F, Simon G, Sauvage S, Gaussin JF, Tuti J, El Yazidi M, Van Vynckt F, Mijatovic T, Lefranc F, Darro F, Kiss R (2007) 2, 2, 2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1, 3-dioxo-2, 3-dihydro-1H-be nzo[de]isoquinolin- 5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. J Med Chem 50:4122–4134

    Article  PubMed  Google Scholar 

  22. Sridhar SS, Hedley D, Siu LL (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4:677–685

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F (2006) A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 22:217–230

    Article  PubMed  CAS  Google Scholar 

  24. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  25. Facchini G, Perri F, Caraglia M, Pisano C, Striano S, Marra L, Fiore F, Aprea P, Pignata S, Iaffaioli RV (2009) New treatment approaches in renal cell carcinoma. Anticancer Drugs 20:893–900

    Article  PubMed  CAS  Google Scholar 

  26. Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335:865–875

    Article  PubMed  CAS  Google Scholar 

  27. Gkialas IK, Papadopoulos G (2009) New therapeutic approaches in the management of metastatic renal cell carcinoma. J BUON 14:399–404

    PubMed  CAS  Google Scholar 

  28. Lee T, Kim J, Sohn U (2002) Sphingosylphosphorylcholine-induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK. Cell Signal 14:989–997

    Article  PubMed  CAS  Google Scholar 

  29. Saddoughi SA, Song P, Ogretmen B (2008) Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem 49:413–440

    Article  PubMed  Google Scholar 

  30. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906

    Article  PubMed  CAS  Google Scholar 

  31. Spiegel S, Kolesnick R (2002) Sphingosine 1-phosphate as a therapeutic agent. Leukemia 16:1596–1602

    Article  PubMed  CAS  Google Scholar 

  32. Bolz SS, Vogel L, Sollinger D, Derwand R, Boer C, Pitson SM, Spiegel S, Pohl U (2003) Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation 108:342–347

    Article  PubMed  CAS  Google Scholar 

  33. Stadler WM (2005) Targeted agents for the treatment of advanced renal cell carcinoma. Cancer 104:2323–2333

    Article  PubMed  CAS  Google Scholar 

  34. Chadha KS, Khoury T, Yu J, Black JD, Gibbs JF, Kuvshinoff BW, Tan D, Brattain MG, Javle MM (2006) Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma. Ann Surg Oncol 13:933–939

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Institutes of Health grant R01 CA122226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beljanski, V., Knaak, C., Zhuang, Y. et al. Combined anticancer effects of sphingosine kinase inhibitors and sorafenib. Invest New Drugs 29, 1132–1142 (2011). https://doi.org/10.1007/s10637-010-9452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9452-0

Keywords

Navigation