Skip to main content

Advertisement

Log in

Tolfenamic acid decreases c-Met expression through Sp proteins degradation and inhibits lung cancer cells growth and tumor formation in orthotopic mice

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The nonsteroidal anti-inflammatory drug (NSAID), tolfenamic acid (TA) is emerging as a new anti-cancer agent. TA induces the degradation of specific Specificity protein (Sp) transcription factors, Sp1, Sp3 and Sp4 which are associated with tumor growth and metastasis. In this study we have evaluated the effect of TA on lung cancer using both in vitro and in vivo models. TA in a dose dependent manner inhibited proliferation and cell viability of two different lung cancer cells, A549 and CRL5803. TA treatment for 48 h significantly decreased the expression of Sp1, Sp3 and Sp4. The hepatocyte growth factor receptor, c-Met is overexpressed in a variety of cancers including lung cancer and Sp proteins mediate the regulation of c-Met. TA diminished the expression of c-Met protein and modulates its downstream signaling pathway. Furthermore, TA treatment significantly increased the number of apoptotic cells and pro-apoptotic markers c-PARP and Bax confirming the activation of apoptotic pathways. In vivo studies using the orthotopic mice model for lung cancer showed that TA (25 mg/kg/2 days and 50 mg/kg/2 days) resulted in a dose dependent decrease in tumor formation. The immunohistochemical staining of lung tissue showed high expression of Sp1, Sp3, Sp4, c-Met and phospho Met in control group and a dose dependent decrease in TA treated groups. The crucial findings of this study support that targeting c-Met with a potent inhibitor of Sp proteins is a robust strategy for the implications in lung cancer treatment and TA can serve as a therapeutic agent for this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  2. Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, Minna JD, Bornmann WG, Gao J, Boothman DA (2007) An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci USA 104:11832–11837

    Article  CAS  PubMed  Google Scholar 

  3. Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, Wang H, Sandler A, Johnson DH, Colevas AD, Low J, Rothenberg ML, Lu B (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13:3033–3042

    Article  CAS  PubMed  Google Scholar 

  4. Fong KM, Sekido Y, Gazdar AF, Minna JD (2003) Lung cancer. 9: molecular biology of lung cancer: clinical implications. Thorax 58:892–900

    Article  CAS  PubMed  Google Scholar 

  5. Devereux TR, Taylor JA, Barrett JC (1996) Molecular mechanisms of lung cancer. Interaction of environmental and genetic factors. Giles F. Filley Lecture. Chest 109:14S–19S

    Article  CAS  PubMed  Google Scholar 

  6. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  CAS  PubMed  Google Scholar 

  7. Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS (2006) K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer 8:30–38

    Article  CAS  PubMed  Google Scholar 

  8. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  9. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  10. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, Hansen M, Schaefer E, Naoki K, Lader A, Richards W, Sugarbaker D, Husain AN, Christensen JG, Salgia R (2005) Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 65:1479–1488

    Article  CAS  PubMed  Google Scholar 

  11. Hahn O, Salgia R (2005) Novel therapies in lung cancer. Hematol Oncol Clin North Am 19:343–367 vii

    Article  PubMed  Google Scholar 

  12. Natali PG, Prat M, Nicotra MR, Bigotti A, Olivero M, Comoglio PM, Di Renzo MF (1996) Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 69:212–217

    Article  CAS  PubMed  Google Scholar 

  13. Olivero M, Rizzo M, Madeddu R, Casadio C, Pennacchietti S, Nicotra MR, Prat M, Maggi G, Arena N, Natali PG, Comoglio PM, Di Renzo MF (1996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 74:1862–1868

    CAS  PubMed  Google Scholar 

  14. Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, Trakhtenbrot L, Kerem B (2002) A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1:89–97

    Article  CAS  PubMed  Google Scholar 

  15. Di Renzo MF, Olivero M, Katsaros D, Crepaldi T, Gaglia P, Zola P, Sismondi P, Comoglio PM (1994) Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58:658–662

    Article  PubMed  Google Scholar 

  16. Maulik G, Kijima T, Ma PC, Ghosh SK, Lin J, Shapiro GI, Schaefer E, Tibaldi E, Johnson BE, Salgia R (2002) Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 8:620–627

    CAS  PubMed  Google Scholar 

  17. Ma PC, Maulik G, Christensen J, Salgia R (2003) c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22:309–325

    Article  CAS  PubMed  Google Scholar 

  18. Siegfried JM, Weissfeld LA, Luketich JD, Weyant RJ, Gubish CT, Landreneau RJ (1998) The clinical significance of hepatocyte growth factor for non-small cell lung cancer. Ann Thorac Surg 66:1915–1918

    Article  CAS  PubMed  Google Scholar 

  19. Bharti A, Ma PC, Maulik G, Singh R, Khan E, Skarin AT, Salgia R (2004) Haptoglobin alpha-subunit and hepatocyte growth factor can potentially serve as serum tumor biomarkers in small cell lung cancer. Anticancer Res 24:1031–1038

    CAS  PubMed  Google Scholar 

  20. Zhang X, Li Y, Dai C, Yang J, Mundel P, Liu Y (2003) Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. Am J Physiol Renal Physiol 284:F82–94

    CAS  PubMed  Google Scholar 

  21. Zhang X, Liu Y (2003) Suppression of HGF receptor gene expression by oxidative stress is mediated through the interplay between Sp1 and Egr-1. Am J Physiol Renal Physiol 284:F1216–1225

    CAS  PubMed  Google Scholar 

  22. Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghardt R, Abudayyeh A, Baker C, Herrera L, Safe S (2009) Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis 30:1193–1201

    Article  CAS  PubMed  Google Scholar 

  23. Abdelrahim M, Safe S (2005) Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 68:317–329

    CAS  PubMed  Google Scholar 

  24. Abdelrahim M, Smith R 3rd, Burghardt R, Safe S (2004) Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res 64:6740–6749

    Article  CAS  PubMed  Google Scholar 

  25. Abdelrahim M, Samudio I, Smith R 3rd, Burghardt R, Safe S (2002) Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. J Biol Chem 277:28815–28822

    Article  CAS  PubMed  Google Scholar 

  26. Hong J, Samudio I, Liu S, Abdelrahim M, Safe S (2004) Peroxisome proliferator-activated receptor gamma-dependent activation of p21 in Panc-28 pancreatic cancer cells involves Sp1 and Sp4 proteins. Endocrinology 145:5774–5785

    Article  CAS  PubMed  Google Scholar 

  27. Khan S, Abdelrahim M, Samudio I, Safe S (2003) Estrogen receptor/Sp1 complexes are required for induction of cad gene expression by 17beta-estradiol in breast cancer cells. Endocrinology 144:2325–2335

    Article  CAS  PubMed  Google Scholar 

  28. Abdelrahim M, Baker CH, Abbruzzese JL, Safe S (2006) Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst 98:855–868

    Article  CAS  PubMed  Google Scholar 

  29. Abdelrahim M, Baker CH, Abbruzzese JL, Sheikh-Hamad D, Liu S, Cho SD, Yoon K, Safe S (2007) Regulation of vascular endothelial growth factor receptor-1 expression by specificity proteins 1, 3, and 4 in pancreatic cancer cells. Cancer Res 67:3286–3294

    Article  CAS  PubMed  Google Scholar 

  30. Abdelrahim M, Liu S, Safe S (2005) Induction of endoplasmic reticulum-induced stress genes in Panc-1 pancreatic cancer cells is dependent on Sp proteins. J Biol Chem 280:16508–16513

    Article  CAS  PubMed  Google Scholar 

  31. Konduri S, Colon J, Baker CH, Safe S, Abbruzzese JL, Abudayyeh A, Basha MR, Abdelrahim M (2009) Tolfenamic acid enhances pancreatic cancer cell and tumor response to radiation therapy by inhibiting survivin protein expression. Mol Cancer Ther 8:533–542

    Article  CAS  PubMed  Google Scholar 

  32. Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee S, Arguiri E, Vachani A, Solomides CC, Cengel KA, Christofidou-Solomidou M (2009) Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther 8:47–53

    Article  CAS  PubMed  Google Scholar 

  33. Gidoni D, Dynan WS, Tjian R (1984) Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature 312:409–413

    Article  CAS  PubMed  Google Scholar 

  34. Suske G (1999) The Sp-family of transcription factors. Gene 238:291–300

    Article  CAS  PubMed  Google Scholar 

  35. Cui J, Meng X, Gao X, Tan G (2009) Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells. Mol Biol Rep [Epub ahead of print].

  36. Herrera LJ, El-Hefnawy T, Queiroz de Oliveira PE, Raja S, Finkelstein S, Gooding W, Luketich JD, Godfrey TE, Hughes SJ (2005) The HGF receptor c-Met is overexpressed in esophageal adenocarcinoma. Neoplasia 7:75–84

    Article  CAS  PubMed  Google Scholar 

  37. Wong BS, Hsiao YC, Lin TW, Chen KS, Chen PN, Kuo WH, Chu SC, Hsieh YS (2009) The in vitro and in vivo apoptotic effects of Mahonia oiwakensis on human lung cancer cells. Chem Biol Interact 180:165–174

    Article  CAS  PubMed  Google Scholar 

  38. Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15:1022–1032

    Article  CAS  PubMed  Google Scholar 

  39. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647

    Article  CAS  PubMed  Google Scholar 

  40. Lee HJ, Lee HJ, Lee EO, Ko SG, Bae HS, Kim CH, Ahn KS, Lu J, Kim SH (2008) Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis. Cancer Lett 270:342–353

    Article  CAS  PubMed  Google Scholar 

  41. Lee JH, Lee YH, Lee HJ, Lee HJ, Lee EO, Ahn KS, Shim BS, Bae H, Choi SH, Ahn KS, Baek NI, Kim DK, Kim SH (2009) Caspase and mitogen activated protein kinase pathways are involved in Solanum lyratum herba induced apoptosis. J Ethnopharmacol 123:121–127

    Article  PubMed  Google Scholar 

  42. Lee KB, Kim KR, Huh TL, Lee YM (2008) Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways. Int J Oncol 33:1247–1256

    CAS  PubMed  Google Scholar 

  43. Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41:2438–2448

    Article  CAS  PubMed  Google Scholar 

  44. Kang Y, Hong JA, Chen GA, Nguyen DM, Schrump DS (2007) Dynamic transcriptional regulatory complexes including BORIS, CTCF and Sp1 modulate NY-ESO-1 expression in lung cancer cells. Oncogene 26:4394–4403

    Article  CAS  PubMed  Google Scholar 

  45. Zheng Y, Ritzenthaler JD, Sun X, Roman J, Han S (2009) Prostaglandin E2 stimulates human lung carcinoma cell growth through induction of integrin-linked kinase: the involvement of EP4 and Sp1. Cancer Res 69:896–904

    Article  CAS  PubMed  Google Scholar 

  46. Tsou JH, Chang KY, Wang WC, Tseng JT, Su WC, Hung LY, Chang WC, Chen BK (2008) Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res 36:217–227

    Article  CAS  PubMed  Google Scholar 

  47. Sun X, Ritzenthaler JD, Zhong X, Zheng Y, Roman J, Han S (2009) Nicotine stimulates PPARbeta/delta expression in human lung carcinoma cells through activation of PI3K/mTOR and suppression of AP-2alpha. Cancer Res 69:6445–6453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank M. D. Anderson Cancer Center Orlando’s Cancer Research Institute for providing necessary financial and technical assistance. The assistance of Donna Schade and Beth Isley is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maen Abdelrahim.

Additional information

Jimmie Colon and Md. Riyaz Basha have equal contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colon, J., Basha, M.R., Madero-Visbal, R. et al. Tolfenamic acid decreases c-Met expression through Sp proteins degradation and inhibits lung cancer cells growth and tumor formation in orthotopic mice. Invest New Drugs 29, 41–51 (2011). https://doi.org/10.1007/s10637-009-9331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9331-8

Keywords

Navigation