Skip to main content
Log in

Minimal logarithmic signatures for classical groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The minimal logarithmic signature conjecture states that in any finite simple group there are subsets A i , 1 ≤ ik such that the size |A i | of each A i is a prime or 4 and each element of the group has a unique expression as a product \({\prod_{i=1}^k x_i}\) of elements \({x_i \in A_i}\). The conjecture is known to be true for several families of simple groups. In this paper the conjecture is shown to be true for the groups \({\Omega^-_{2m}(q), \Omega^+_{2m}(q)}\), when q is even, by studying the action on suitable spreads in the corresponding projective spaces. It is also shown that the method can be used for the finite symplectic groups. The construction in fact gives cyclic minimal logarithmic signatures in which each A i is of the form \({\{y_i^j \ |\ 0 \leq j < |A_i|\}}\) for some element y i of order ≥ |A i |.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. André J.: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60, 156–186 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babai L., Pálfy P.P., Saxl J.: On the number of p regular elements in finite simple groups. LMS J. Comput. Math. 12, 82–119 (2009)

    MathSciNet  Google Scholar 

  3. Bereczky Á.: Maximal overgroups of singer elements in classical groups. J. Algebra 234, 187–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Beule J., Klein A., Metsch K., Storme L.: Partial ovoids and partial spreads of classical finite polar spaces. Serdica Math. J. 34, 689–714 (2008)

    MathSciNet  Google Scholar 

  5. Bohli J.M., Steinwandt R., González Vasco M.I., Martínez C.: Weak keys in MST 1. Des. Codes Cryptogr. 37, 509–524 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruck R.H., Bose R.C.: The construction of translation planes from projective spaces. J. Algebra 1, 85–102 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Ann. Math. Pura Appl. 114(4), 173–194 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dye R.H.: Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. J. Lond. Math. Soc. 33(2), 279–293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dye R.H.: Spreads and classes of maximal subgroups of GL n (q),  SL n (q), PGL n (q) and PSL n (q). Ann. Math. Pura Appl. 158(4), 33–50 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Garrett P.: Buildings and Classical Groups. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  11. González Vasco M.I., Steinwandt R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)

    MathSciNet  MATH  Google Scholar 

  12. González Vasco M.I., Rötteler M., Steinwandt R.: On minimal length factorizations of finite groups. Exp. Math. 12, 1–12 (2003)

    MATH  Google Scholar 

  13. Hestenes M.D.: Singer groups. Canad. J. Math. 22, 492–513 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirschfeld J.: Projective Geometries Over Finite Fields. The Clarendon Press, Oxford University Press, New York (1998)

    MATH  Google Scholar 

  15. Holmes P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13, 435–440 (2004)

    MATH  Google Scholar 

  16. Kantor W.M.: Spreads, translation planes and Kerdock sets. I. SIAM J Algebraic Discret. Methods 3, 151–165 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kleidman P., Liebeck M.: The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990).

  18. Lempken W., van Trung T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14, 257–269 (2005)

    Article  MATH  Google Scholar 

  19. Lempken W., Magliveras S.S., van Trung T., Wei W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)

    Article  MATH  Google Scholar 

  20. Magliveras S.S.: A cryptosystem from logarithmic signatures of finite groups. In: Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972–975. Elsevier Publishing Company, Amsterdam (1986).

  21. Magliveras S.S.: Secret and public-key cryptosystems from group factorizations. Tatra Mt. Math. Publ. 25, 11–22 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Magliveras S.S., Svaba P., van Trung T., Zajac P.: On the security of a realization of cryptosystem MST 3. Tatra Mt. Math. Publ. 41, 1–13 (2008)

    MathSciNet  Google Scholar 

  23. Singhi N., Singhi N., Magliveras S.S.: Minimal logarithmic signatures for finite groups of lie type. Des. Codes Cryptogr. 55, 243–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thas J.A.: Ovoids and spreads of finite classical polar spaces. Geom. Dedicata 10, 135–143 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wilson R.A.: The finite simple groups. Graduate Texts in Mathematics, vol 251. Springer-Verlag, London (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Singhi.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhi, N., Singhi, N. Minimal logarithmic signatures for classical groups. Des. Codes Cryptogr. 60, 183–195 (2011). https://doi.org/10.1007/s10623-010-9427-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9427-3

Keywords

Mathematics Subject Classification (2000)

Navigation