Skip to main content

Advertisement

Log in

Role of Interleukins in Inflammation-Mediated Tumor Immune Microenvironment Modulation in Colorectal Cancer Pathogenesis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Introduction

Tumor cells invade and spread through a procedure termed as epithelial-to-mesenchymal cell transition (EMT). EMT is triggered by any alterations in the genes that encode the extracellular matrix (ECM) proteins, the enzymes that break down the ECM, and the activation of the genes that causes the epithelial cell to change into a mesenchymal type. The transcription factors NF-κB, Smads, STAT3, Snail, Zeb, and Twist are activated by inflammatory cytokines, for instance, Tumor Necrosis Factor, Tumor Growth Factors, Interleukin-1, Interleukin-8, and Interleukin-6, which promotes EMT.

Materials

The current piece of work has been reviewed from the literature works published in last 10 years on the role interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis utilizing the databases like Google Scholar, PubMed, Science Direct.

Results

Recent studies have demonstrated that pathological situations, such as epithelial malignancies, exhibit EMT characteristics, such as the downregulation of epithelial markers and the overexpression of mesenchymal markers. Several growing evidence have also proved its existence in the human colon during the carcinogenesis of colorectal cancer. Most often, persistent inflammation is thought to be one factor contributing to the initiation of human cancers, such as colorectal cancer (CRC). Therefore, according to epidemiologic and clinical research, people with ulcerative colitis and Crohn’s disease have a greater probability of developing CRC.

Conclusion

A substantial amount of data points to the involvement of the NF-κB system, SMAD/STAT3 signaling cascade, microRNAs, and the Ras-mitogen-activated protein kinase/Snail/Slug in the epithelial-to-mesenchymal transition-mediated development of colorectal malignancies. As a result, EMT is reported to play an active task in the pathogenesis of colorectal cancer, and therapeutic interventions targeting the inflammation-mediated EMT might serve as a novel strategy for treating CRC.

Graphical Abstract

The illustration depicts the relationship between interleukins and their receptors as a driver of CRC development and the potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Cardoso R, Guo F, Heisser T et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: an international population-based study. Lancet Oncol. 2021;22:1002–1013. https://doi.org/10.1016/S1470-2045(21)00199-6.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, et al. GLOBOCAN 2020 annexes. Published online 2020. https://gco.iarc.fr/today/data/methods/GLOBOCAN2020_annexes.pdf

  3. Roelands J, Kuppen PJK, Vermeulen L, et al 2017 Immunogenomic Classification of Colorectal Cancer and Therapeutic Implications. Int J Mol Sci. 2017;18. doi:https://doi.org/10.3390/ijms18102229

  4. Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract. 2015;211:557–569.

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee A, Chabria Y, Kanna NRR et al. Role of Tumor Specific niche in Colon Cancer Progression and Emerging Therapies by Targeting Tumor Microenvironment. Adv Exp Med Biol. 2021;1341:177–192.

    Article  CAS  PubMed  Google Scholar 

  6. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frigerio S, Lartey DA, D’Haens GR, Grootjans J. The role of the immune system in ibd-associated colorectal cancer: From pro to anti-tumorigenic mechanisms. Int. J. Mol. Sci. 2021;22:12739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deka D, D’Incà R, Sturniolo GC, Das A, Pathak S, Banerjee A. Role of ER Stress Mediated Unfolded Protein Responses and ER Stress Inhibitors in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci. 2022;67:5392–5406.

    Article  PubMed  Google Scholar 

  9. Banu SP NS, Narayan S. Biomaterial Based Nanocarriers for Delivering Immunomodulatory Agents. Nanomed Res J. 2021;6(3):195–217.

    Google Scholar 

  10. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–134.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sarkar FH, Li Y, Wang Z, Kong D. NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol. 2008;27:293–319.

    Article  CAS  PubMed  Google Scholar 

  12. López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009;1:303–314.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Girigoswami K, Girigoswami A. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. EMIDDT. 2021;21(1):12–26.

    Article  CAS  Google Scholar 

  14. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008;283:33437–33446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brabletz T, Jung A, Reu S et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Batlle E, Sancho E, Francí C et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–89.

    Article  CAS  PubMed  Google Scholar 

  17. Cano A, Pérez-Moreno MA, Rodrigo I et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  18. Hai Ping P, Feng Bo T, Li L, Nan Hui Y, Hong Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch Biochem Biophys. 2016;604:20–26.

    Article  PubMed  Google Scholar 

  19. He C, Yu T, Shi Y et al. MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterology. 2017;152:1434-1448.e15.

    Article  CAS  PubMed  Google Scholar 

  20. Sconocchia G, Eppenberger-Castori S, Zlobec I et al. HLA class II antigen expression in colorectal carcinoma tumors as a favorable prognostic marker. Neoplasia. 2014;16:31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ning C, Li YY, Wang Y et al. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis. Mucosal Immunol. 2015;8:1275–1284.

    Article  CAS  PubMed  Google Scholar 

  22. Leonard WJ, Lin JX, O’Shea JJ. The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity. 2019;50:832–850.

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Gong C, Mao H et al. E2F1/SP3/STAT6 axis is required for IL-4-induced epithelial-mesenchymal transition of colorectal cancer cells. Int J Oncol. 2018;53:567–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Krzystek-Korpacka M, Zawadzki M, Neubauer K et al. Elevated systemic interleukin-7 in patients with colorectal cancer and individuals at high risk of cancer: association with lymph node involvement and tumor location in the right colon. Cancer Immunol Immunother. 2017;66:171–179.

    Article  CAS  PubMed  Google Scholar 

  25. Li ZW, Sun B, Gong T et al. GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2. Gastroenterology. 2019;156:2297–2312.

    Article  CAS  PubMed  Google Scholar 

  26. Gao S, Hu J, Wu X, Liang Z. PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2018;108:618–624.

    Article  CAS  PubMed  Google Scholar 

  27. Rokavec M, Öner MG, Li H et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshizaki A, Nakayama T, Yamazumi K, Yakata Y, Taba M, Sekine I. Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int J Oncol. 2006;29:869–876.

    CAS  PubMed  Google Scholar 

  29. Fisher RC, Bellamkonda K, Alex Molina L et al. Disrupting Inflammation-Associated CXCL8-CXCR1 Signaling Inhibits Tumorigenicity Initiated by Sporadic- and Colitis-Colon Cancer Stem Cells. Neoplasia. 2019;21:269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Q, Sun F, Wang B et al. Interleukin-8 promotes cell migration through integrin αvβ6 upregulation in colorectal cancer. Cancer Lett. 2014;354:245–253.

    Article  CAS  PubMed  Google Scholar 

  31. Doulabi H, Rastin M, Shabahangh H et al. Analysis of Th22, Th17 and CD4+cells co-producing IL-17/IL-22 at different stages of human colon cancer. Biomed Pharmacother. 2018;103:1101–1106.

    Article  CAS  PubMed  Google Scholar 

  32. Fukui H, Sekikawa A, Tanaka H et al. DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. Inflamm Bowel Dis. 2011;17:1177–1188.

    Article  PubMed  Google Scholar 

  33. Amicarella F, Muraro MG, Hirt C et al. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut. 2017;66:692–704.

    Article  CAS  PubMed  Google Scholar 

  34. Do Thi VA, Park SM, Lee H, Kim YS. The Membrane-Bound Form of IL-17A Promotes the Growth and Tumorigenicity of Colon Cancer Cells. Mol Cells. 2016;39:536–542.

    Article  PubMed  Google Scholar 

  35. Liao Y, Zhao J, Bulek K et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung AS, Wu X, Zhuang G et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19:1114–1123.

    Article  CAS  PubMed  Google Scholar 

  37. Yan X, Zhao J, Zhang R. Interleukin-37 mediates the antitumor activity in colon cancer through β-catenin suppression. Oncotarget. 2017;8:49064–49075.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Weinstein AM, Giraldo NA, Petitprez F et al. Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunol Immunother. 2019;68:109–120.

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Li Y, Sun X et al. Powerful anti-colon cancer effect of modified nanoparticle-mediated IL-15 immunogene therapy through activation of the host immune system. Theranostics. 2019;9:6466–6467.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang C, Lu Y, Chen L et al. Th9 cells are subjected to PD-1/PD-L1-mediated inhibition and are capable of promoting CD8 T cell expansion through IL-9R in colorectal cancer. Int Immunopharmacol. 2020;78:106019.

    Article  CAS  PubMed  Google Scholar 

  41. Tong Z, Yang XO, Yan H et al. A protective role by interleukin-17F in colon tumorigenesis. PLoS ONE. 2012;7(4):e34959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tosolini M, Kirilovsky A, Mlecnik B et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:4732.

    Article  CAS  Google Scholar 

  43. Díaz-Montero CM, El Naggar S, Al Khami A et al. Priming of naive CD8+ T cells in the presence of IL-12 selectively enhances the survival of CD8+CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother. 2008;57:563–572. https://doi.org/10.1007/s00262-007-0394-0.

    Article  CAS  PubMed  Google Scholar 

  44. Hewitt SL, Bailey D, Zielinski J et al. Intratumoral IL12 mRNA Therapy Promotes TH1 Transformation of the Tumor Microenvironment. Clin cancer Res an Off J Am Assoc Cancer Res. 2020;26:6284–6298. https://doi.org/10.1158/1078-0432.CCR-20-0472.

    Article  CAS  Google Scholar 

  45. Mirlekar B, Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel). 2021;13:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Lau G, Chen L et al. Interleukin 23 promotes hepatocellular carcinoma metastasis via NF-kappa B induced matrix metalloproteinase 9 expression. PLoS One. 2012;7:e46264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang HH, Young SH, Sinnett-Smith J et al. Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1. Am J Physiol Cell Physiol. 2015;309:C639–C649.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sheng S, Zhang J, Ai J, Hao X, Luan R. Aberrant expression of IL-23/IL-23R in patients with breast cancer and its clinical significance. Mol Med Rep. 2018;17:4639–4644.

    CAS  PubMed  Google Scholar 

  49. Elessawi DF, Alkady MM, Ibrahim IM. Diagnostic and prognostic value of serum IL-23 in colorectal cancer. Arab J Gastroenterol. 2019;20:65–68.

    Article  PubMed  Google Scholar 

  50. Stanilov N, Miteva L, Jovchev J, Cirovski G, Stanilova S. The prognostic value of preoperative serum levels of IL-12p40 and IL-23 for survival of patients with colorectal cancer. APMIS. 2014;122:1223–1229.

    Article  CAS  PubMed  Google Scholar 

  51. Neurath MF. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev. 2019;45:1–8.

    Article  CAS  PubMed  Google Scholar 

  52. Nie W, Yu T, Sang Y, Gao X. Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment. Biochem Biophys Res Commun. 2017;482:1400–1406.

    Article  CAS  PubMed  Google Scholar 

  53. Kortlever RM, Sodir NM, Wilson CH et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toiyama Y, Yasuda H, Saigusa S et al. Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 2013;34:2548–2557.

    Article  CAS  PubMed  Google Scholar 

  55. Gomez I, Peña C, Herrera M et al. TWIST1 is expressed in colorectal carcinomas and predicts patient survival. PLoS ONE 2011;6:e18023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh AB, Sharma A, Smith JJ et al. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology. 2011;141:2140–2153.

    Article  CAS  PubMed  Google Scholar 

  57. Sánchez-Tilló E, de Barrios O, Siles L et al. ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1. Clin Cancer Res. 2013;19:1071–1082.

    Article  PubMed  Google Scholar 

  58. Welch-Reardon KM, Ehsan SM, Wang K et al. Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci. 2014;127:2017–2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang AD, Fan F, Camp ER et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res. 2006;12:4147–4153.

    Article  CAS  PubMed  Google Scholar 

  60. Hoshino H, Miyoshi N, Nagai K et al. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun. 2009;390:1061–1065.

    Article  CAS  PubMed  Google Scholar 

  61. Trumpp A, Wiestler OD. Mechanisms of Disease: cancer stem cells–targeting the evil twin. Nat Clin Pract Oncol. 2008;5:337–347.

    Article  CAS  PubMed  Google Scholar 

  62. Fan CW, Chen T, Shang YN et al. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies. Cell Death Dis. 2013;4:e828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li X, Lewis MT, Huang J et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–679.

    Article  CAS  PubMed  Google Scholar 

  64. Offner S, Hekele A, Teichmann U et al. Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol Immunother. 2005;54:431–445.

    Article  CAS  PubMed  Google Scholar 

  65. Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. Advances in Cancer Biology-Metastasis. 2022;12:100055.

    Article  Google Scholar 

  66. Basu D, Lettan R, Damodaran K, Strellec S, Reyes-Mugica M, Rebbaa A. Identification, mechanism of action, and antitumor activity of a small molecule inhibitor of hippo, TGF-β, and Wnt signaling pathways. Mol Cancer Ther. 2014;13:1457–1467.

    Article  CAS  PubMed  Google Scholar 

  67. Ganapathy K, Staklinski S, Hasan MF et al. Multifaceted Function of MicroRNA-299-3p Fosters an Antitumor Environment Through Modulation of Androgen Receptor and VEGFA Signaling Pathways in Prostate Cancer. Sci Rep. 2020;10:5167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 2016;157:52–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsai JH, Yang J. Epithelial to mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 2005;132:3151–3161.

    Article  CAS  PubMed  Google Scholar 

  71. Pálmer HG, Larriba MJ, García JM et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat. Med. 2004;10:917–919.

    Article  PubMed  Google Scholar 

  72. Hwang WL, Yang MH, Tsai ML et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology. 2011;141:279–291.

    Article  CAS  PubMed  Google Scholar 

  73. Garcia-Palmero I, Torres S, Bartolome RA et al. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen alpha1(VI). Oncogene. 2016;35:5224–5236.

    Article  CAS  PubMed  Google Scholar 

  74. Celesti G, Di Caro G, Bianchi P et al. Presence of Twist1-positive neoplastic cells in the stroma of chromosome-unstable colorectal tumors. Gastroenterology. 2013;145:647–657.

    Article  CAS  PubMed  Google Scholar 

  75. Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22:2453–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang J, Scully K, Zhu X et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature. 2007;446:882–887.

    Article  CAS  PubMed  Google Scholar 

  77. Kahlert C, Lahes S, Radhakrishnan P et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin. Cancer Res. 2011;17:7654–7663.

    Article  CAS  PubMed  Google Scholar 

  78. Aigner K, Dampier B, Descovich LM et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007;26:6979–6988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spaderna S, Schmalhofer O, Wahlbuhl M et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537–544.

    Article  CAS  PubMed  Google Scholar 

  80. Kaneda H, Arao T, Tanaka K et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res. 2010;70:2053–2063.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang H, Meng F, Liu G et al. Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res. 2011;71:1292–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abba M, Patil N, Rasheed K et al. Unraveling the role of FOXQ1 in colorectal cancer metastasis. Mol. Cancer Res. 2013;11:1017–1028.

    Article  CAS  PubMed  Google Scholar 

  83. Li Q, Wu J, Wei P et al. Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition. Am. J. Cancer Res. 2015;5:2022–2034.

    PubMed  PubMed Central  Google Scholar 

  84. Zhang X, Zhang L, Du Y et al. A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene. 2016;36:807–819.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin. Cancer Res. 2012;18:6416–6425.

    Article  CAS  PubMed  Google Scholar 

  86. Pan JJ, Yang MH. The role of epithelial-mesenchymal transition in pancreatic cancer. J Gastrointest Oncol. 2011;2:151–156.

    PubMed  PubMed Central  Google Scholar 

  87. Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14:481–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Long AG, Lundsmith ET, Hamilton KE. Inflammation and Colorectal Cancer. Curr Colorectal Cancer Rep. 2017;13:341–351.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lindemans CA, Calafiore M, Mertelsmann AM et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Markopoulos GS, Roupakia E, Marcu KB, Kolettas E. Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells. 2019;8:1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–273.

    Article  CAS  PubMed  Google Scholar 

  92. Matsuzaki K, Seki T, Okazaki K. TGF-beta during human colorectal carcinogenesis: the shift from epithelial to mesenchymal signaling. Inflammopharmacology. 2006;14:198–203.

    Article  CAS  PubMed  Google Scholar 

  93. Bravo-Vázquez LA, Frías-Reid N, Ramos-Delgado AG et al. MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications. Transl Oncol. 2023;27:101579. https://doi.org/10.1016/j.tranon.2022.101579.

    Article  CAS  PubMed  Google Scholar 

  94. Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem. 2007;101:9–33.

    Article  CAS  PubMed  Google Scholar 

  95. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25:657–663.

    Article  CAS  PubMed  Google Scholar 

  96. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480.

    Article  CAS  PubMed  Google Scholar 

  97. Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A. β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A. 2011;108:19204–19209.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Roy HK, Olusola BF, Clemens DL et al. AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis. 2002;23:201–205.

    Article  CAS  PubMed  Google Scholar 

  99. Suman S, Kurisetty V, Das TP et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog. 2014;53:E151–E160.

    Article  CAS  PubMed  Google Scholar 

  100. Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q. PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 2007;67:2922–2926.

    Article  CAS  PubMed  Google Scholar 

  101. Gulhati P, Bowen KA, Liu J et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011;71:3246–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Katoh M, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther. 2006;5:1059–1064.

    Article  CAS  PubMed  Google Scholar 

  103. Peláez IM, Kalogeropoulou M, Ferraro A et al. Oncogenic RAS alters the global and gene-specific histone modification pattern during epithelial-mesenchymal transition in colorectal carcinoma cells. Int J Biochem Cell Biol. 2010;42:911–920.

    Article  PubMed  Google Scholar 

  104. Wang Y, Ngo VN, Marani M et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29:4658–4670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makrodouli E, Oikonomou E, Koc M et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study. Mol Cancer. 2011;10:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruiz-Manriquez LM, Estrada-Meza C, Benavides-Aguilar JA et al. Phytochemicals mediated modulation of microRNAs and long non-coding RNAs in cancer prevention and therapy. Phytother Res. 2022;36:705–729.

    Article  CAS  PubMed  Google Scholar 

  107. Naing A, Papadopoulos KP, Autio KA et al. Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10 (AM0010) in Patients With Advanced Solid Tumors. J Clin Oncol. 2016;34:3562–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li J, Huang L, Zhao H, Yan Y, Lu J. The Role of Interleukins in Colorectal Cancer. Int J Biol Sci. 2020;16:2323–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bilusic M, Heery CR, Collins JM et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer. 2019;7:240.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liu KJ, Chao TY, Chang JY et al. A phase I clinical study of immunotherapy for advanced colorectal cancers using carcinoembryonic antigen-pulsed dendritic cells mixed with tetanus toxoid and subsequent IL-2 treatment. J Biomed Sci. 2016;23:64.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Matsusaka S, Hanna DL, Cao S et al. Prognostic Impact of IL6 Genetic Variants in Patients with Metastatic Colorectal Cancer Treated with Bevacizumab-Based Chemotherapy. Clin Cancer Res. 2016;22:3218–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tsimogiannis KE, Tellis CC, Tselepis AD, Pappas-Gogos GK, Tsimoyiannis EC, Basdanis G. Toll-like receptors in the inflammatory response during open and laparoscopic colectomy for colorectal cancer. Surg Endosc. 2012;26:330–336.

    Article  PubMed  Google Scholar 

  113. Liu H, Ren G, Wang T et al. Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial-mesenchymal transition. Carcinogenesis 2015;36:459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cao H, Zhang J, Liu H et al. IL-13/STAT6 signaling plays a critical role in the epithelial-mesenchymal transition of colorectal cancer cells. Oncotarget 2016;7:61183–61198.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lin X, Wang S, Sun M et al. miR-195–5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. J Hematol Oncol 2019;12:20.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wei C, Yang C, Wang S et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 2019;18:64.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sun Q, Shang Y, Sun F, Dong X, Niu J, Li F. Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Cell Invasion through Integrin β6 Upregulation in Colorectal Cancer. Oxid Med Cell Longev. 2020;2020:8032187.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lin Y, He Z, Ye J et al. Progress in Understanding the IL-6/STAT3 Pathway in Colorectal Cancer. Onco Targets Ther 2020;13:13023–13032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li J, Huang L, Zhao H, Yan Y, Lu J. The Role of Interleukins in Colorectal Cancer. Int J Biol Sci 2020;16:2323–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pastille E, Wasmer MH, Adamczyk A et al. The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer. Mucosal Immunol 2019;12:990–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bergman M, Levin GS, Bessler H, Djaldetti M, Salman H. Resveratrol affects the cross talk between immune and colon cancer cells. Biomed Pharmacother 2013;67:43–47.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Davis C, Shah S et al. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 2017;56:272–287.

    Article  CAS  PubMed  Google Scholar 

  123. Liu X, Li Y, Sun X, et al. Powerful anti-colon cancer effect of modified nanoparticle-mediated IL-15 immunogene therapy through activation of the host immune system [published correction appears in Theranostics. 2019 Aug 17;9(22):6466–6467]. Theranostics. 2018;8:3490–3503. Published 2018 Jun 6.

  124. Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ et al. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch Biochem Biophys 2021;699:108763.

    Article  CAS  PubMed  Google Scholar 

  125. Xia W, Chen W, Zhang Z et al. Prognostic value, clinicopathologic features and diagnostic accuracy of interleukin-8 in colorectal cancer: a meta-analysis. PLoS One 2015;10:e0123484.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dumoutier L, Van Roost E, Colau D, Renauld JC. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 2000;97:10144–10149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003;14:155–174.

    Article  CAS  PubMed  Google Scholar 

  128. Razi S, Baradaran Noveiry B, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine 2019;116:7–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this paper are thankful to Chettinad Academy of Research and Education (CARE) for providing the support infrastructurally and to DST (INSPIRE), Govt of India, and CARE for the financial support.

Funding

This work was partially supported by the DST Inspire research student grant with award number 190963 awarded to Ms. Dikshita Deka and Supervisor Dr. Antara Banerjee and JRF fellowship grant awarded to Ms. Samatha Jain from Chettinad academy of Research and Education.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and conceptualized by AB. The manuscript was written and the artwork was designed by AB, SJ, DD, and AD. The final draft of the manuscript was reviewed and edited by SP, AB, and SP.

Corresponding author

Correspondence to Antara Banerjee.

Ethics declarations

Conflict of interest

None. All authors declare that there are no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S.M., Deka, D., Das, A. et al. Role of Interleukins in Inflammation-Mediated Tumor Immune Microenvironment Modulation in Colorectal Cancer Pathogenesis. Dig Dis Sci 68, 3220–3236 (2023). https://doi.org/10.1007/s10620-023-07972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-023-07972-8

Keywords

Navigation