Skip to main content
Log in

Anti-inflammatory Effects of Ivermectin in the Treatment of Acetic Acid-Induced Colitis in Rats: Involvement of GABAB Receptors

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Recent investigations have proposed the potential role of gamma-aminobutyric acid (GABA) in regulating motility and immunity of the gastrointestinal system.

Aims

We aimed to investigate the anti-inflammatory effects of ivermectin (IVM) through GABAB receptors following acetic acid-induced colitis in rats.

Methods

In a controlled experimental study, we enrolled 78 male Wistar rats (13 groups; 6 rats/group). After colitis induction using acetic acid (4%), IVM, baclofen (a standard GABAB agonist) or the combination of both agents was delivered to rats orally (by gavage), with the same dosage continued for 5 days. The control group received the vehicle, and prednisolone (a standard anti-inflammatory agent) was administered in a separate group as the positive control. Colon samples were collected on the sixth day for histopathological evaluations and measurement of myeloperoxidase (MPO) activity, TNF-α levels, and p-NF-ĸB p65, COX-2 and iNOS expression levels.

Results

The greatest recovery was found after administering IVM 0.5, baclofen 0.5, or IVM 0.2 + baclofen 0.2 mg/kg/day (ulcer index [UI] = 1.4 ± 0.4, 1.7 ± 0.6, and 1.4 ± 0.3, respectively; p  < 0.001 vs. the control [UI = 6.5 ± 0.7]). Histopathological evaluations revealed a significant decrease in the inflammation severity in the three above-mentioned groups. P-NF-ĸB p65, COX-2, and iNOS expression, MPO activity, and TNF-α levels also decreased dramatically following treatment with IVM 0.5, baclofen 0.5, or the combination therapy (p < 0.001 vs. the control).

Conclusions

IVM exerted promising anti-inflammatory effects in treating acetic acid-induced colitis in rats. Its synergistic effect with baclofen also signified the possible involvement of GABAB receptors in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Molodecky NA, Soon S, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012;142:46-54.e42.

    Article  Google Scholar 

  2. Tasdemir S, Parlakpinar H, Vardi N, Kaya E, Acet A. Effect of endogen-exogenous melatonin and erythropoietin on dinitrobenzene sulfonic acid–induced colitis. Fundam Clin Pharmacol 2013;27:299–307.

    Article  CAS  Google Scholar 

  3. Xavier R, Podolsky D. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007;448:427–434.

    Article  CAS  Google Scholar 

  4. Podolsky DK. Inflammatory bowel disease. N Engl J Med 1991;325:928–937.

    Article  CAS  Google Scholar 

  5. Monteleone G, Pallone F, MacDonald TT. Emerging immunological targets in inflammatory bowel disease. Curr Opin Pharmacol 2011;11:640–645.

    Article  CAS  Google Scholar 

  6. Braus NA, Elliott DE. Advances in the pathogenesis and treatment of IBD. Clin Immunol 2009;132:1–9.

    Article  CAS  Google Scholar 

  7. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. The Lancet 2007;369:1641–1657.

    Article  CAS  Google Scholar 

  8. Dejban P, Sahraei M, Chamanara M, Dehpour A, Rashidian A. Anti-inflammatory effect of amitriptyline in a rat model of acetic acid-induced colitis: the involvement of the TLR4/NF-kB signaling pathway. Fundam Clin Pharmacol. 2020.

  9. Motavallian A, Bouzari S, Zamani E, Karimian P, Dabirian S, Molavi M, Torshkooh FA. An investigation of the anti-inflammatory effects of gabapentin on acetic acid-induced colitis in rats. Mol Biol Rep. 2021. https://doi.org/10.1007/s11033-021-06357-2.

    Article  PubMed  Google Scholar 

  10. Tabary M, Aryannejad A, Noroozi N, Tavangar SM, Jafari RM, Araghi F, Dadkhahfar S, Dehpour AR. Ivermectin increases random-pattern skin flap survival in rats: the novel role of GABAergic system. J Surg Res 2021;259:431–441.

    Article  CAS  Google Scholar 

  11. Aggarwal S, Ahuja V, Paul J. Attenuated GABAergic signaling in intestinal epithelium contributes to pathogenesis of ulcerative colitis. Dig Dis Sci 2017;62:2768–2779. https://doi.org/10.1007/s10620-017-4662-3.

    Article  CAS  PubMed  Google Scholar 

  12. Yan S, Ci X, Chen N, Chen C, Li X, Chu X, Li J, Deng X. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflam Res 2011;60:589–596.

    Article  CAS  Google Scholar 

  13. Risks NIoHOfPfR, Association AREN. Institutional Animal Care and Use Committee Guidebook. vol 92. US Department of Health and Human Services, Public Health Service, National. 1992.

  14. Rashidian A, Muhammadnejad A, Dehpour A-R, Mehr SE, Akhavan MM, Shirkoohi R, Chamanara M, Mousavi S-E, Rezayat S-M. Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway. Inflammopharmacology 2016;24:109–118.

    Article  CAS  Google Scholar 

  15. Underwood W, Anthony R. AVMA guidelines for the euthanasia of animals. Retrieved March 2020;2013:2020–2021.

    Google Scholar 

  16. Franek M, Vaculin S, Rokyta R. GABA~ B receptor agonist baclofen has non-specific antinociceptive effect in the model of peripheral neuropathy in rat. Physiol Res 2004;53:351–355.

    CAS  PubMed  Google Scholar 

  17. Witaicenis A, Luchini AC, Hiruma-Lima CA, Felisbino SL, Garrido-Mesa N, Utrilla P, Gálvez J, di Stasi LC. Suppression of TNBS-induced colitis in rats by 4-methylesculetin, a natural coumarin: comparison with prednisolone and sulphasalazine. Chemico Biol Interact 2012;195:76–85.

    Article  CAS  Google Scholar 

  18. Yousefi-Ahmadipour A, Rashidian A, Mirzaei MR, Farsinejad A, PourMohammadi-Nejad F, Ghazi-Khansari M, Ai J, Shirian S, Allahverdi A, Saremi J. Combination therapy of mesenchymal stromal cells and sulfasalazine attenuates trinitrobenzene sulfonic acid induced colitis in the rat: The S1P pathway. J Cell Physiol 2019;234:11078–11091.

    Article  CAS  Google Scholar 

  19. El-Salhy M, Umezawa K. Anti-inflammatory effects of novel AP-1 and NF-κB inhibitors in dextran-sulfate-sodium-induced colitis in rats. Int J Mol Med 2016;37:1457–1464.

    Article  CAS  Google Scholar 

  20. Deshmukh C, Veeresh B, Pawar A. Protective effect of Emblica officinalis fruit extract on acetic acid induced colitis in rats. J Herbal Med Toxicol 2010;4:83–87.

    Google Scholar 

  21. Rashidian A, Mehrzadi S, Ghannadi AR, Mahzooni P, Sadr S, Minaiyan M. Protective effect of ginger volatile oil against acetic acid-induced colitis in rats: a light microscopic evaluation. J Integr Med 2014;12:115–120.

    Article  Google Scholar 

  22. Rezayat SM, Dehpour A-R, Motamed SM, Yazdanparast M, Chamanara M, Sahebgharani M, Rashidian A. Foeniculum vulgare essential oil ameliorates acetic acid-induced colitis in rats through the inhibition of NF-kB pathway. Inflammopharmacology 2018;26:851–859.

    Article  CAS  Google Scholar 

  23. Jurjus AR, Khoury NN, Reimund J-M. Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods 2004;50:81–92.

    Article  CAS  Google Scholar 

  24. Rashidian A, Keshavarz-Bahaghighat H, Abdollahi A, Chamanara M, Faghir-Ghanesefat H, Hoseini-Ahmadabadi M, Dehpour AR. Agmatine ameliorates acetic acid-induced colitis in rats: involvement of nitrergic system. Immunopharmacol Immunotoxicol 2019;41:242–249.

    Article  CAS  Google Scholar 

  25. Rashidian A, Rashki A, Abdollahi A, Haddadi N-S, Chamanara M, Mumtaz F, Dehpour AR. Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2019;41:607–613.

    Article  CAS  Google Scholar 

  26. Roberts E, Frankel S. γ-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 1950;187:55–63.

    Article  CAS  Google Scholar 

  27. Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev 2008;60:243–260.

    Article  CAS  Google Scholar 

  28. Ma X, Sun Q, Sun X, Chen D, Wei C, Yu X, Liu C, Li Y, Li J. Activation of GABAA receptors in colon epithelium exacerbates acute colitis. Front Immunol 2018;9:987.

    Article  Google Scholar 

  29. Uezono Y, Kaibara M, Hayashi H, Kawakami S, Enjoji A, Kanematsu T, Taniyama K. Characterization of GABAB receptor in the human colon. J Pharmacol Sci 2004;94:211–213.

    Article  CAS  Google Scholar 

  30. Jin Z, Mendu SK, Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids 2013;45:87–94.

    Article  CAS  Google Scholar 

  31. Piechota-Polanczyk A, Fichna J. The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg’s Archiv Pharmacol 2014;387:605–620.

    Article  CAS  Google Scholar 

  32. Duthey B, Hübner A, Diehl S, Boehncke S, Pfeffer J, Boehncke WH. Anti-inflammatory effects of the GABAB receptor agonist baclofen in allergic contact dermatitis. Exp Dermatol 2010;19:661–666.

    Article  CAS  Google Scholar 

  33. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003;3:521–533.

    Article  CAS  Google Scholar 

  34. Dionne S, Hiscott J, D’agata I, Duhaime A, Seidman E. Quantitative PCR analysis of TNF-α and IL-1β mRNA levels in pediatric IBD mucosal biopsies. Dig Dis Sci 1997;42:1557–1566. https://doi.org/10.1023/A:1018895500721.

    Article  CAS  PubMed  Google Scholar 

  35. Ordás I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther 2012;91:635–646.

    Article  Google Scholar 

  36. Neurath MF, Pettersson S, Zum Büschenfelde K-HM, Strober W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF–κB abrogates established experimental colitis in mice. Nat Med 1996;2:998–1004.

    Article  CAS  Google Scholar 

  37. Liu F, Zhang Y-Y, Song N, Lin J, Liu M-k, Huang C-L, Zhou C, Wang H, Wang M, Shen J-F. GABAB receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: Role of NF-κB and MAPK signaling pathways. Brain Res Bull 2019;149:240–250.

    Article  CAS  Google Scholar 

  38. Ardite E, Panes J, Miranda M, Salas A, Elizalde J, Sans M, Arce Y, Bordas J, Fernández-Checa J, Pique J. Effects of steroid treatment on activation of nuclear factor κB in patients with inflammatory bowel disease. Br J Pharmacol 1998;124:431–433.

    Article  CAS  Google Scholar 

  39. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010;29:781–788. https://doi.org/10.1038/onc.2009.421.

    Article  CAS  PubMed  Google Scholar 

  40. Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 2004;113:427–437. https://doi.org/10.1111/j.1365-2567.2004.01984.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dudhgaonkar SP, Tandan SK, Kumar D, Raviprakash V, Kataria M. Influence of simultaneous inhibition of cyclooxygenase-2 and inducible nitric oxide synthase in experimental colitis in rats. Inflammopharmacology 2007;15:188–195. https://doi.org/10.1007/s10787-007-1603-3.

    Article  CAS  PubMed  Google Scholar 

  42. Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E. The TNBS-induced colitis animal model: an overview. Ann Med Surg 2016;11:9–15.

    Article  Google Scholar 

  43. Yamada T, Marshall S, Specian RD, Grisham MB. A comparative analysis of two models of colitis in rats. Gastroenterology 1992;102:1524–1534.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the Experimental Medicine Research Center, Tehran University of Medical Sciences (Grant No. 99-1-209-48299). The authors also want to thank the Iran National Science Foundation (INSF) for their kind support.

Funding

This study was supported by a grant from the Experimental Medicine Research Center, Tehran University of Medical Sciences (Grant No. 99-1-209-48299).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: AD; acquisition of data: AA, MT, NN, SMT; analysis and interpretation of data: AA, MT, AR, RM; drafting of the manuscript: AA, MT, BM, AD, SI; critical revision: AD, AR.

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All experiments were carried out according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 8523, revised in 2011). All the study protocols were also approved by the Ethics in Medical Research Committee of Tehran University of Medical Sciences (No. IR.TUMS.MEDICINE.REC.1399.135) and were therefore performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryannejad, A., Tabary, M., Noroozi, N. et al. Anti-inflammatory Effects of Ivermectin in the Treatment of Acetic Acid-Induced Colitis in Rats: Involvement of GABAB Receptors. Dig Dis Sci 67, 3672–3682 (2022). https://doi.org/10.1007/s10620-021-07258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07258-x

Keywords

Navigation