Skip to main content

Advertisement

Log in

Calprotectin, Calgranulin C, and Other Members of the S100 Protein Family in Inflammatory Bowel Disease

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Since their discovery, S100 proteins have been associated with diverse diseases of inflammatory, degenerative, or malignant nature. Due to their participation in inflammation, they have also been studied with regard to inflammatory bowel disease (IBD).

Method

To provide a review of available literature, a PubMed, MEDLINE, and Embase-based literature search was performed, using all available nomenclature for each member of the S100 protein family, along with the terms inflammatory bowel disease, ulcerative colitis, Crohn’s disease, or indeterminate colitis.

Result

S100A8/A9, also known as calprotectin, S100A12, or calgranulin C and in a lesser extent S100P, are involved in the pathogenesis, activity, diagnosis, and therapeutic management of IBD. The majority of available literature is focused primarily on S100A8/9, although there is growing evidence on the significance of S100A12. Most studies emphasize the potential merit of S100A8/A9 and S100A12, as markers for differential diagnosis, monitoring of activity, or disease relapse, in IBD. Limitations, regarding the diagnostic utility of these markers, seem to exist and are mainly related to the publication of conflicting results, i.e., for IBD activity, and to the fact that S100A8/A9 and S100A12 are not disease-specific.

Conclusions

Although the existing data link specific S100 proteins with IBD, there are still several drawbacks in the use of these markers for diagnostic purposes. Thus, it seems that further research is mandatory in order to eliminate the impact of confounding factors but also to detect additional associations between S100 proteins and IBD or novel S100 proteins with a closer correlation with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commmun. 1965;19:739–744.

    Article  PubMed  CAS  Google Scholar 

  2. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006;396:201–214.

    Article  PubMed  CAS  Google Scholar 

  3. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60:540–551.

    Article  PubMed  CAS  Google Scholar 

  4. Foell D, Frosch M, Sorg C, et al. Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta. 2004;344:3751.

    Google Scholar 

  5. Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37.

    Article  PubMed  CAS  Google Scholar 

  6. Leclerc E, Fritz G, Weibel M, et al. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem. 2007;282:31317–31331.

    Article  PubMed  CAS  Google Scholar 

  7. Salama I, Malone PS, Mihaimeed F, et al. A review of the S100 proteins in cancer. Eur J Surg Oncol. 2008;34:357–364.

    PubMed  CAS  Google Scholar 

  8. Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–1380.

    Article  PubMed  CAS  Google Scholar 

  9. Pleger ST, Most P, Boucher M, et al. Stable myocardial-specific AAV6–S100A1 gene therapy results in chronic functional heart failure rescue. Circulation. 2007;115:2506–2515.

    Article  PubMed  CAS  Google Scholar 

  10. Eckert RL, Broome AM, Ruse M, et al. S100 proteins in the epidermis. J Invest Dermatol. 2004;123:23–33.

    Article  PubMed  CAS  Google Scholar 

  11. Giovannoni G. Multiple sclerosis cerebrospinal fluid biomarkers. Dis Markers. 2006;22:187–196.

    PubMed  CAS  Google Scholar 

  12. Yao R, Lopez-Beltran A, Maclennan GT, Montironi R, Eble JN, Cheng L. Expression of S100 protein family members in the pathogenesis of bladder tumors. Anticancer Res. 2007;27:3051–3058.

    PubMed  CAS  Google Scholar 

  13. Hancq S, Salmon I, Brotchi J, et al. S100A5: a marker of recurrence in WHO grade I meningiomas. Neuropathol Appl Neurobiol. 2004;30:178–187.

    Article  PubMed  CAS  Google Scholar 

  14. Pierce A, Barron N, Linehan R, et al. Identification of a novel, functional role for S100A13 in invasive lung cancer cell lines. Eur J Cancer. 2008;44:151–159.

    Article  PubMed  CAS  Google Scholar 

  15. Landriscina M, Schinzari G, Di Leonardo G, et al. S100A13, a new marker of angiogenesis in human astrocytic gliomas. J Neurooncol. 2006;80:251–259.

    Article  PubMed  CAS  Google Scholar 

  16. Michetti F, Gazzolo D. S100B testing in pregnancy. Clin Chim Acta. 2003;335:1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Esposito G, Cirillo C, Sarnelli G, et al. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology. 2007;133:918–925.

    Article  PubMed  CAS  Google Scholar 

  18. Lawrance IC, Fiocchi C, Chakravarti S. Ulcerative colitis and Crohn’s disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet. 2001;10:445–456.

    Article  PubMed  CAS  Google Scholar 

  19. Roth J, Vogl T, Sorg C, et al. Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol. 2003;24:155–158.

    Article  PubMed  CAS  Google Scholar 

  20. Vogl T, Propper C, Hartmann M, et al. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J Biol Chem. 1999;274:25291–25296.

    Article  PubMed  CAS  Google Scholar 

  21. El-Rifai W, Moskaluk CA, Abdrabbo MK, et al. Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res. 2002;62:6823–6826.

    PubMed  CAS  Google Scholar 

  22. Liu J, Li X, Dong GL, et al. In silico analysis and verification of S100 gene expression in gastric cancer. BMC Cancer. 2008;8:261.

    Google Scholar 

  23. Sapkota D, Bruland O, Bøe OE, et al. Expression profile of the S100 gene family members in oral squamous cell carcinomas. J Oral Pathol Med. 2008;37:607–615.

    Article  PubMed  CAS  Google Scholar 

  24. Ji J, Zhao L, Wang X, et al. Differential expression of S100 gene family in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004;130:480–486.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez JA, Li M, Yao Q, et al. Gene overexpression in pancreatic adenocarcinoma: diagnostic and therapeutic implications. World J Surg. 2005;29:297–305.

    Article  PubMed  Google Scholar 

  26. Capella C, Riva C, Rindi G, et al. Endocrine tumors of the duodenum and upper jejunum. A study of 33 cases with clinico-pathological characteristics and hormone content. Hepatogastroenterology. 1990;37:247–252.

    PubMed  CAS  Google Scholar 

  27. Srivastava MD, Kulaylat MN. Gene expression profiles of late colonic Crohn’s disease. J Med. 2004;35:233–255.

    PubMed  CAS  Google Scholar 

  28. Rugtveit J, Nilsen EM, Bakka A, et al. Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology. 1997;112:1493–1505.

    Article  PubMed  CAS  Google Scholar 

  29. Sarsfield P, Jones DB, Wright DH. Accessory cells in Crohn’s disease of the terminal ileum. Histopathology. 1996;28:213–219.

    Article  PubMed  CAS  Google Scholar 

  30. Waraich T, Sarsfield P, Wright DH. The accessory cell populations in ulcerative colitis: a comparison between the colon and appendix in colitis and acute appendicitis. Hum Pathol. 1997;28:297–303.

    Article  PubMed  CAS  Google Scholar 

  31. Verstege MI, ten Kate FJ, Reinartz SM, et al. Dendritic cell populations in colon and mesenteric lymph nodes of patients with Crohn’s disease. J Histochem Cytochem. 2008;56:233–241.

    Article  PubMed  CAS  Google Scholar 

  32. Kubota Y, Petras RE, Ottaway CA, et al. Colonic vasoactive intestinal peptide nerves in inflammatory bowel disease. Gastroenterology. 1992;102:1242–1251.

    PubMed  CAS  Google Scholar 

  33. Foell D, Kucharzik T, Kraft M, et al. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut. 2003;52:847–853.

    Article  PubMed  CAS  Google Scholar 

  34. Leach ST, Yang Z, Messina I, et al. Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand J Gastroenterol. 2007;42:1321–1331.

    Article  PubMed  CAS  Google Scholar 

  35. Rugtveit J, Haraldsen G, Hogasen AK, et al. Respiratory burst of intestinal macrophages in inflammatory bowel disease is mainly caused by CD14 + L1 + monocyte derived cells. Gut. 1995;37:367–373.

    Article  PubMed  CAS  Google Scholar 

  36. Lügering N, Stoll R, Kucharzik T, et al. Immunohistochemical distribution and serum levels of the Ca(2 +)-binding proteins MRP8, MRP14 and their heterodimeric form MRP8/14 in Crohn’s disease. Digestion. 1995;56:406–414.

    Article  PubMed  Google Scholar 

  37. Kapsoritakis AN, Georgoulias PA, Manolakis AC, et al. Serum S100A12, a marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut. 2008;57:A138.

    Google Scholar 

  38. de Jong NS, Leach ST, Day AS. Fecal S100A12: a novel noninvasive marker in children with Crohn’s disease. Inflamm Bowel Dis. 2006;12:566–572.

    Article  PubMed  Google Scholar 

  39. Kaiser T, Langhorst J, Wittkowski H, et al. Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut. 2007;56:1706–1713.

    Article  PubMed  CAS  Google Scholar 

  40. Sidler MA, Leach ST, Day AS. Fecal S100A12 and fecal calprotectin as noninvasive markers for inflammatory bowel disease in children. Inflamm Bowel Dis. 2008;14:359–366.

    Article  PubMed  Google Scholar 

  41. Foell D, Wittkowski H, Ren Z, et al. Phagocyte-specific S100 proteins are released from affected mucosa and promote immune responses during inflammatory bowel disease. J Pathol. 2008;216:183–192.

    Article  PubMed  CAS  Google Scholar 

  42. Karl J, Wild N, Tacke M, et al. Improved diagnosis of colorectal cancer using a combination of fecal occult blood and novel fecal protein markers. Clin Gastroenterol Hepatol. 2008;6:1122–1128.

    Article  PubMed  Google Scholar 

  43. Fagerberg UL, Lööf L, Lindholm J, et al. Fecal calprotectin: a quantitative marker of colonic inflammation in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;45:414–420.

    Article  PubMed  Google Scholar 

  44. von Roon AC, Karamountzos L, Purkayastha S, et al. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007;102:803–813.

    Article  Google Scholar 

  45. Joishy M, Davies I, Ahmed M, et al. Fecal calprotectin and lactoferrin as noninvasive markers of pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2009;48:48–54.

    Article  PubMed  CAS  Google Scholar 

  46. D’Incà R, Dal Pont E, Di Leo V, et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Colorectal Dis. 2007;22:429–437.

    Article  PubMed  Google Scholar 

  47. Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol. 2008;103:162–169.

    PubMed  Google Scholar 

  48. Dolwani S, Metzner M, Wassell JJ, et al. Diagnostic accuracy of faecal calprotectin estimation in prediction of abnormal small bowel radiology. Aliment Pharmacol Ther. 2004;20:615–621.

    Article  PubMed  CAS  Google Scholar 

  49. Schoepfer AM, Trummler M, Seeholzer P, et al. Discriminating IBD from IBS: comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm Bowel Dis. 2008;14:32–39.

    Article  PubMed  Google Scholar 

  50. Otten CM, Kok L, Witteman BJ, et al. Diagnostic performance of rapid tests for detection of fecal calprotectin and lactoferrin and their ability to discriminate inflammatory from irritable bowel syndrome. Clin Chem Lab Med. 2008;46:1275–1280.

    Article  PubMed  CAS  Google Scholar 

  51. Limburg PJ, Ahlquist DA, Sanborn WJ, et al. Faecal calprotectin levels predict colorectal inflammation among patients with chronic diarrhea referred for colonoscopy. Am J Gastroenterol. 2000;95:2831–2837.

    Article  PubMed  CAS  Google Scholar 

  52. Caroccio A, Iacono G, Cottone M, et al. Diagnostic accuracy of faecal calprotectin assay in distinguishing organic causes of chronic diarrhea from irritable bowel syndrome: a prospective study in adults and children. Clin Chem. 2003;49:861–867.

    Article  Google Scholar 

  53. Costa F, Mumolo MG, Bellini M, et al. Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Dig Liv Dis. 2003;35:642–647.

    Article  CAS  Google Scholar 

  54. Leach ST, Mitchell HM, Geczy CL, et al. S100 calgranulin proteins S100A8, S100A9 and S100A12 are expressed in the inflamed gastric mucosa of Helicobacter pylori-infected children. Can J Gastroenterol. 2008;22:461–464.

    PubMed  Google Scholar 

  55. Tursi A, Brandimarte G, Elisei W, et al. Faecal calprotectin in colonic diverticular disease: a case-control study. Int J Colorectal Dis. 2009;24:49–55.

    Article  PubMed  Google Scholar 

  56. Bremner A, Roked S, Robinson R, et al. Faecal calprotectin in children with chronic gastrointestinal symptoms. Acta Paediatr. 2005;94:1855–1858.

    Article  PubMed  Google Scholar 

  57. Tibble J, Sigthorsson G, Foster R, et al. Faecal calprotectin and faecal occult blood tests in the diagnosis of colorectal carcinoma and adenoma. Gut. 2001;49:402–408.

    Article  PubMed  CAS  Google Scholar 

  58. Hoff G, Grotmol T, Thiis-Evensen E, et al. Testing for faecal calprotectin (PhiCal) in the Norwegian Colorectal Cancer Prevention trial on flexible sigmoidoscopy screening: comparison with an immunochemical test for occult blood (FlexSure OBT). Gut. 2004;53:1329–1333.

    Article  PubMed  CAS  Google Scholar 

  59. Wedlake L, McGough C, Hackett C, et al. Can biological markers act as non-invasive, sensitive indicators of radiation-induced effects in the gastrointestinal mucosa? Aliment Pharmacol Ther. 2008;27:980–987.

    Article  PubMed  CAS  Google Scholar 

  60. Reinders CA, Jonkers D, Janson EA, et al. Rectal nitric oxide and fecal calprotectin in inflammatory bowel disease. Scand J Gastroenterol. 2007;42:1151–1157.

    Article  PubMed  CAS  Google Scholar 

  61. Poullis A, Foster R, Shetty A, et al. Bowel inflammation as measured by fecal calprotectin: a link between lifestyle factors and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2004;13:279–284.

    Article  PubMed  CAS  Google Scholar 

  62. Langhorst J, Elsenbruch S, Mueller T, et al. Comparison of 4 neutrophil-derived proteins in feces as indicators of disease activity in ulcerative colitis. Inflamm Bowel Dis. 2005;11:1085–1091.

    Article  PubMed  Google Scholar 

  63. Sipponen T, Savilahti E, Kolho KL, et al. Crohn’s disease activity assessed by fecal calprotectin and lactoferrin: correlation with Crohn’s disease activity index and endoscopic findings. Inflamm Bowel Dis. 2008;14:40–46.

    Article  PubMed  Google Scholar 

  64. Sipponen T, Savilahti E, Kärkkäinen P, et al. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn’s disease. Inflamm Bowel Dis. 2008;14:1392–1398.

    Article  PubMed  Google Scholar 

  65. Sipponen T, Kärkkäinen P, Savilahti E, et al. Correlation of faecal calprotectin and lactoferrin with an endoscopic score for Crohn’s disease and histological findings. Aliment Pharmacol Ther. 2008;28:1221–1229.

    Article  PubMed  CAS  Google Scholar 

  66. Canani RB, Terrin G, Rapacciuolo L, et al. Faecal calprotectin as reliable non-invasive marker to assess the severity of mucosal inflammation in children with inflammatory bowel disease. Dig Liver Dis. 2008;40:547–553.

    Article  PubMed  Google Scholar 

  67. Vieira A, Fang CB, Rolim EG, et al. Inflammatory bowel disease activity assessed by fecal calprotectin and lactoferrin: correlation with laboratory parameters, clinical, endoscopic and histological indexes. BMC Res Notes. 2009;2:221.

    Google Scholar 

  68. Schoepfer AM, Beglinger C, Straumann A, et al. Ulcerative colitis: Correlation of the Rachmilewitz endoscopic activity index with fecal calprotectin, clinical activity, C-reactive protein, and blood leucocytes. Inflamm Bowel Dis. 2009;15:1851–1858.

    Article  PubMed  Google Scholar 

  69. Schoepfer AM, Beglinger C, Straumann A, et al. Fecal calprotectin correlates more closely with the Simple Endoscopic Score for Crohn’s disease (SES-CD) than CRP, blood leucocytes, and the CDAI. Am J Gastroenterol. 2010;105:162–169.

    Article  PubMed  CAS  Google Scholar 

  70. Kolho KL, Raivio T, Lindahl H, et al. Fecal calprotectin remains high during glucocorticoid therapy in children with inflammatory bowel disease. Scand J Gastroenterol. 2006;41:720–725.

    Article  PubMed  CAS  Google Scholar 

  71. Scarpa M, D’Incà R, Basso D, et al. Fecal lactoferrin and calprotectin after ileocolonic resection for Crohn’s disease. Dis Colon Rectum. 2007;50:861–869.

    Article  PubMed  Google Scholar 

  72. Tibble JA, Sigthorsson G, Bridger S, et al. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22.

    Article  PubMed  CAS  Google Scholar 

  73. Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54:364–368.

    Article  PubMed  CAS  Google Scholar 

  74. D’Incà R, Dal Pont E, Di Leo V, et al. Can calprotectin predict relapse risk in inflammatory bowel disease? Am J Gastroenterol. 2008;103:2007–2014.

    Article  PubMed  Google Scholar 

  75. Gisbert JP, Bermejo F, Perez-Calle JL, et al. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis. 2009;15:1190–1198.

    Article  PubMed  Google Scholar 

  76. Orlando A, Modesto I, Castiglione F, et al. The role of calprotectin in predicting endoscopic post-surgical recurrence in asymptomatic Crohn’s disease: a comparison with ultrasound. Eur Rev Med Pharmacol Sci. 2006;10:17–22.

    PubMed  CAS  Google Scholar 

  77. Lamb CA, Mohiuddin MK, Gicquel J, et al. Faecal calprotectin or lactoferrin can identify postoperative recurrence in Crohn’s disease. Br J Surg. 2009;96:663–674.

    Article  PubMed  CAS  Google Scholar 

  78. Thomas P, Rihani H, Røseth A, et al. Assessment of ileal pouch inflammation by single-stool calprotectin assay. Dis Colon Rectum. 2000;43:214–220.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson MW, Maestranzi S, Duffy AM, et al. Faecal calprotectin: a noninvasive diagnostic tool and marker of severity in pouchitis. Eur J Gastroenterol Hepatol. 2008;20:174–179.

    Article  PubMed  Google Scholar 

  80. Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97:889–901.

    Article  PubMed  CAS  Google Scholar 

  81. Turovskaya O, Foell D, Sinha P, et al. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis. 2008;29:2035–2043.

    Article  PubMed  CAS  Google Scholar 

  82. Ghavami S, Kerkhoff C, Los M, et al. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions. J Leukoc Biol. 2004;76:169–175.

    Article  PubMed  CAS  Google Scholar 

  83. Ghavami S, Kerkhoff C, Chazin WJ, et al. S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochim Biophys Acta. 2008;1783:297–311.

    Article  PubMed  CAS  Google Scholar 

  84. Nakayama Y, Inoue Y, Minagawa N, et al. Relationships between S-100 protein-positive cells and clinicopathological factors in patients with colorectal cancer. Anticancer Res. 2003;23:4423–4426.

    PubMed  CAS  Google Scholar 

  85. Nagorsen D, Voigt S, Berg E, et al. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med. 2007;5:62.

    Google Scholar 

  86. Arumugam T, Ramachandran V, Logsdon CD. Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models. J Natl Cancer Inst. 2006;98:1806–1818.

    Article  PubMed  CAS  Google Scholar 

  87. Røseth AG, Fagerhol MK, Aadland E, et al. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand J Gastroenterol. 1992;27:793–798.

    Article  PubMed  Google Scholar 

  88. Bunn SK, Bisset WM, Main MJ, et al. Fecal calprotectin as a measure of disease activity in childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2001;32:171–177.

    Article  PubMed  CAS  Google Scholar 

  89. Xiang JY, Ouyang Q, Li GD, et al. Clinical value of fecal calprotectin in determining disease activity of ulcerative colitis. World J Gastroenterol. 2008;14:53–57.

    Article  PubMed  CAS  Google Scholar 

  90. Ho GT, Lee HM, Brydon G, et al. Fecal calprotectin predicts the clinical course of acute severe ulcerative colitis. Am J Gastroenterol. 2009;104:673–678.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros P. Potamianos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manolakis, A.C., Kapsoritakis, A.N., Tiaka, E.K. et al. Calprotectin, Calgranulin C, and Other Members of the S100 Protein Family in Inflammatory Bowel Disease. Dig Dis Sci 56, 1601–1611 (2011). https://doi.org/10.1007/s10620-010-1494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1494-9

Keywords

Navigation