Skip to main content

Advertisement

Log in

Proteasome Inhibitor MG132 Inhibits Angiogenesis in Pancreatic Cancer by Blocking NF-κB Activity

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Since angiogenesis enables solid tumors, including pancreatic cancer (PaCa), to grow and metastasize, the development of anti-angiogenic agents is currently one of the urgent issues. Proteasome inhibitors are well known for inhibiting nuclear factor-kappa B (NF-κB) activity in various cancer cells, but little is known about their biologic mechanisms against angiogenesis in PaCa. We divided human PaCa cell lines into high-angiogenic (BxPC-3 and SW 1990) and low-angiogenic (MIA PaCa-2 and Capan-2) groups. The high-angiogenic PaCa cell lines constitutively expressed high NF-κB activity and produced high levels of vascular endothelial growth factor (VEGF) and interleukin 8 (IL-8). The conditioned media from BxPC-3 significantly enhanced both proliferation of and tube formation by human umbilical vein endothelial cells (HUVECs) and these enhancements were significantly inhibited by the proteasome inhibitor MG132 treatment. Collectively, MG132 blocked PaCa-derived VEGF and IL-8 production through inhibition of NF-κB activity. Thus, proteasome inhibitors may prove beneficial as anti-angiogenic therapy for PaCa. Our studies show that MG132, a proteasome inhibitor, significantly blocked pancreatic-cancer-associated angiogenesis through inhibition of NF-κB and NF-κB-dependent proangiogenic gene products VEGF and IL-8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PaCa:

Pancreatic cancer

NF-κB:

Nuclear factor-kappa B

VEGF:

Vascular endothelial growth factor

IL:

Interleukin

FCS:

Fetal calf serum

HUVEC:

Human umbilical vein endothelial cell

MTS assay:

Celltiter 96 Aqueous One Solution cell proliferation assay

ELISA:

Enzyme-linked immunosorbent assay

EMSA:

Electrophoretic mobility shift assay

ANOVA:

Analysis of variance

SD:

Standard deviation

SNK test:

Student–Newman–Keuls test

PI:

Proteasome inhibitor

References

  1. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg. 1995;221:721–731. doi:10.1097/00000658-199506000-00011 (discussion 731–733).

    Google Scholar 

  2. Evans DB, Lee JE, Pisters PW, et al. Advances in the diagnosis and treatment of adenocarcinoma of the pancreas. Cancer Treat Res. 1997;90:109–125.

    CAS  PubMed  Google Scholar 

  3. Pino SM, Xiong HQ, McConkey D, Abbruzzese JL. Novel therapies for pancreatic adenocarcinoma. Curr Oncol Rep. 2004;6:199–206. doi:10.1007/s11912-004-0050-1.

    Article  PubMed  Google Scholar 

  4. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–310. doi:10.1038/nrc780.

    Article  CAS  PubMed  Google Scholar 

  5. Sovak MA, Bellas RE, Kim DW, et al. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest. 1997;100:2952–2960. doi:10.1172/JCI119848.

    Article  CAS  PubMed  Google Scholar 

  6. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100:2961–2969. doi:10.1172/JCI119849.

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res. 1999;5:119–127.

    CAS  PubMed  Google Scholar 

  8. Xiong HQ, Abbruzzese JL, Lin E, Wang L, Zheng L, Xie K. NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer. 2004;108:181–188. doi:10.1002/ijc.11562.

    Article  CAS  PubMed  Google Scholar 

  9. Beg AA, Baldwin AS Jr. The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev. 1993;7:2064–2070. doi:10.1101/gad.7.11.2064.

    Article  CAS  PubMed  Google Scholar 

  10. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9:2723–2735. doi:10.1101/gad.9.22.2723.

    Article  CAS  PubMed  Google Scholar 

  11. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994;78:773–785. doi:10.1016/S0092-8674(94)90482-0.

    Article  CAS  PubMed  Google Scholar 

  12. Traenckner EB, Wilk S, Baeuerle PA. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J. 1994;13:5433–5441.

    CAS  PubMed  Google Scholar 

  13. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001;411:375–379. doi:10.1038/35077241.

    Article  CAS  PubMed  Google Scholar 

  14. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22:251–256. doi:10.1016/S0968-0004(97)01074-8.

    Article  CAS  PubMed  Google Scholar 

  15. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6. doi:10.1093/jnci/82.1.4.

    Article  CAS  PubMed  Google Scholar 

  16. Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Res. 1986;46:467–473.

    CAS  PubMed  Google Scholar 

  17. Matsuo Y, Sawai H, Ochi N, et al. Interleukin-1 alpha secreted by pancreatic cancer cells promotes angiogenesis and its therapeutic implications. J Surg Res. (in press).

  18. Matsuo Y, Sawai H, Funahashi H, et al. Enhanced angiogenesis due to inflammatory cytokines from pancreatic cancer cell lines and relation to metastatic potential. Pancreas. 2004;28:344–352. doi:10.1097/00006676-200404000-00025.

    Article  CAS  PubMed  Google Scholar 

  19. Nawrocki ST, Bruns CJ, Harbison MT, et al. Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther. 2002;1:1243–1253.

    CAS  PubMed  Google Scholar 

  20. Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther. 2004;3:59–70.

    CAS  PubMed  Google Scholar 

  21. Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN. An in vitro model of angiogenesis: basic features. Angiogenesis. 1999;3:335–344. doi:10.1023/A:1026546219962.

    Article  CAS  PubMed  Google Scholar 

  22. Osugi T, Oshima Y, Fujio Y, et al. Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem. 2002;277:6676–6681. doi:10.1074/jbc.M108246200.

    Article  CAS  PubMed  Google Scholar 

  23. Folkman J. Angiogenesis and angiogenesis inhibition: an overview. EXS. 1997;79:1–8.

    CAS  PubMed  Google Scholar 

  24. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res. 1993;53:4727–4735.

    CAS  PubMed  Google Scholar 

  25. Itakura J, Ishiwata T, Friess H, et al. Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression. Clin Cancer Res. 1997;3:1309–1316.

    CAS  PubMed  Google Scholar 

  26. Shi Q, Le X, Abbruzzese JL, et al. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 2001;61:4143–4154.

    CAS  PubMed  Google Scholar 

  27. Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res. 1999;5:3711–3721.

    CAS  PubMed  Google Scholar 

  28. Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 2001;12:375–391. doi:10.1016/S1359-6101(01)00016-8.

    Article  CAS  PubMed  Google Scholar 

  29. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266:11947–11954.

    CAS  PubMed  Google Scholar 

  30. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA. 1997;94:4273–4278. doi:10.1073/pnas.94.9.4273.

    Article  CAS  PubMed  Google Scholar 

  31. Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 1997;63:51–60. doi:10.1016/S0925-4773(97)00674-6.

    Article  CAS  PubMed  Google Scholar 

  32. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol. 1998;18:3112–3119.

    CAS  PubMed  Google Scholar 

  33. Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy-Stein O, Levi BZ. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene. 1998;17:227–236. doi:10.1038/sj.onc.1202019.

    Article  CAS  PubMed  Google Scholar 

  34. Le X, Shi Q, Wang B, et al. Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res. 2000;20:935–946. doi:10.1089/10799900050198372.

    Article  CAS  PubMed  Google Scholar 

  35. Shi Q, Le X, Wang B, et al. Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene. 2001;20:3751–3756. doi:10.1038/sj.onc.1204500.

    Article  CAS  PubMed  Google Scholar 

  36. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20:4188–4197. doi:10.1038/sj.onc.1204535.

    Article  CAS  PubMed  Google Scholar 

  37. Sawai H, Funahashi H, Okada Y, et al. Interleukin-1alpha enhances IL-8 secretion through p38 mitogen-activated protein kinase and reactive oxygen species signaling in human pancreatic cancer cells. Med Sci Monit. 2005;11:BR343–350.

    Google Scholar 

  38. Mizukami Y, Jo WS, Duerr EM, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med. 2005;11:992–997.

    CAS  PubMed  Google Scholar 

  39. Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ. Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol. 2005;56:46–54. doi:10.1007/s00280-004-0944-5.

    Article  CAS  PubMed  Google Scholar 

  40. Dong QG, Sclabas GM, Fujioka S, et al. The function of multiple IkappaB: NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene. 2002;21:6510–6519. doi:10.1038/sj.onc.1205848.

    Article  CAS  PubMed  Google Scholar 

  41. Arlt A, Vorndamm J, Breitenbroich M, et al. Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene. 2001;20:859–868. doi:10.1038/sj.onc.1204168.

    Article  CAS  PubMed  Google Scholar 

  42. Alberts SR, Foster NR, Morton RF, et al. PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group (NCCTG) randomized phase II study. Ann Oncol. 2005;16:1654–1661. doi:10.1093/annonc/mdi324.

    Article  CAS  PubMed  Google Scholar 

  43. Arlt A, Gehrz A, Müerköster S, et al. Role of NF-kappaB and Akt/PI3 K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene. 2003;22:3243–3251. doi:10.1038/sj.onc.1206390.

    Article  CAS  PubMed  Google Scholar 

  44. Tong Z, Kunnumakkara AB, Wang H, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68:6100–6108. doi:10.1158/0008-5472.CAN-08-0540.

    Article  CAS  PubMed  Google Scholar 

  45. Wente MN, Eibl G, Reber HA, Friess H, Büchler MW, Hines OJ. The proteasome inhibitor MG132 induces apoptosis in human pancreatic cancer cells. Oncol Rep. 2005;14:1635–1638.

    CAS  PubMed  Google Scholar 

  46. Fan XM, Wong BC, Wang WP, et al. Inhibition of proteasome function induced apoptosis in gastric cancer. Int J Cancer. 2001;93:481–488. doi:10.1002/ijc.1373.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Shi Y, Li X, et al. Proteasome inhibitor MG132 reverses multidrug resistance of gastric cancer through enhancing apoptosis and inhibiting P-gp. Cancer Biol Ther. 2008;7:540–546.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Karen Phillips from the Department of Scientific Publications for carefully reviewing this manuscript. This research was supported in part by The University of Texas M.D. Anderson Cancer Center Physician Scientist Program Award (to SG) and NIH grant CA16672 (Cancer Center Support Grant to M.D. Anderson Cancer Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushovan Guha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, Y., Sawai, H., Ochi, N. et al. Proteasome Inhibitor MG132 Inhibits Angiogenesis in Pancreatic Cancer by Blocking NF-κB Activity. Dig Dis Sci 55, 1167–1176 (2010). https://doi.org/10.1007/s10620-009-0814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0814-4

Keywords

Navigation