Skip to main content

Advertisement

Log in

Site Specific Delivery of Microencapsulated Fish Oil to the Gastrointestinal Tract of the Rat

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2011

Abstract

The aim of this study was to design food grade matrices to deliver microencapsulated fish oil to the large bowel of the rat where the potential exists to retard inflammation and cancer development. Digestion in simulated gastric fluid and intestinal fluid demonstrated that only 4–6% of oil was released from the following dried emulsion formulations: 50% fish oil encapsulated in heated casein-glucose-dried glucose syrup (1:1:1) (Cas-Glu-DGS-50); 25% fish oil in casein-modified resistant starch (Hylon VII) (1:1) (Cas-Hylon-25); or 25% fish oil in Cas-Glu-Hylon (1:1:1) (Cas-Glu-Hylon-25). A short-term gavage study (0–12 h) with fish oil and Cas-Glu-DGS-50 demonstrated the appearance of fish oil long chain (LC) n-3 polyunsaturated fatty acids (PUFA) into the plasma indicating specific small intestinal absorption with little LC n-3 PUFA reaching the large bowel. In a 2-week-long term, daily gavage study, the bioavailability of fish oil and fish oil in Cas-Glu-DGS-50 or Cas-Hylon-25 demonstrated that fish oil and Cas-Glu-DGS-50 LC n-3 PUFA were incorporated into the tissue of the small intestine and colon, whereas Cas-Hylon-25 was resistant to degradation in the small intestine. The use of modified Hylon VII for targeted colonic delivery was confirmed in the final short-term gavage study (0–14 h) using Cas-Glu-Hylon-25 with [14C]-trilinolenin as a marker incorporated into the microcapsules, where up to 60% of the labeled oil reached the large bowel. Depending on the microencapsulating matrix employed, fish oil can be delivered selectively to the small intestine or to a high degree to the large bowel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pattison DJ, Symmons DP, Young A (2004) Does diet have a role in the aetiology of rheumatoid arthritis? Proc Nutr Soc 63:137–143. doi:10.1079/PNS2003319

    Article  PubMed  CAS  Google Scholar 

  2. MacLean CH, Mojica WA, Newberry SJ, Pencharz J, Garland RH, Tu W et al (2005) Systematic review of the effects of n-3 fatty acids in inflammatory bowel disease. Am J Clin Nutr 82:611–619

    PubMed  CAS  Google Scholar 

  3. De Lorgeril M (2007) Essential polyunsaturated fatty acids, inflammation, atherosclerosis and cardiovascular diseases. Subcell Biochem 42:283–297

    Article  PubMed  Google Scholar 

  4. Akedo I, Ishikawa H, Nakamura T, Kimura K, Ikuko T, Suzuki T et al (1998) Three cases with familial adenomatous polyposis diagnosed as having malignant lesions in the time course of a long-term trial using docosahexaenoic acid (DHA)-concentrated fish oil capsules. Jpn J Clin Oncol 28:762–765. doi:10.1093/jjco/28.12.762

    Article  PubMed  CAS  Google Scholar 

  5. Huang YC, Jessup JM, Forse RA, Flickner S, Pleskpw D, Anastopoulos HT et al (1996) N-3 fatty acids decrease colonic epithelial cell proliferation in at risk bowel mucosa. Lipids 31:S313–S317. doi:10.1007/BF02637099

    Article  PubMed  CAS  Google Scholar 

  6. Nkondlock A, Ghadirian P (2004) Dietary carotenoids and risk of colon cancer: case-control study. Int J Cancer 110:110–116. doi:10.1002/ijc.20066

    Article  Google Scholar 

  7. Raju J, McCarthy B, Bird RP (2002) Steady state levels of transforming growth factor-beta1 and -beta2 mRNA and protein expression are elevated in colonic tumors in vivo irrespective of dietary lipids intervention. Int J Cancer 100:635–641. doi:10.1002/ijc.10522

    Article  PubMed  CAS  Google Scholar 

  8. Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemoprotective agents. Pharmacol Ther 83:217–244. doi:10.1016/S0163-7258(99)00026-1

    Article  PubMed  CAS  Google Scholar 

  9. Roynette CE, Calder PC, Dupertuis YM, Pichard C (2004) n-3 Polyunsaturated fatty acids and colon cancer prevention. Clin Nutr 23:139–151. doi:10.1016/j.clnu.2003.07.005

    Article  PubMed  CAS  Google Scholar 

  10. Dommels YEM, Haring MMG, Keestra NGM, Alink GM, van Bladeren PJ, van Ommen B (2003) The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis 24:385–392. doi:10.1093/carcin/24.3.385

    Article  PubMed  CAS  Google Scholar 

  11. Jordan A, Stein J (2003) Effect of an omega-3 fatty acid containing lipid emulsion alone and in combination with 5-fluorouracil (5-FU) on growth of colon cancer cell line Caco-2. Eur J Nutr 42:324–331. doi:10.1007/s00394-003-0427-1

    Article  PubMed  CAS  Google Scholar 

  12. Danbara N, Yuri T, Tsujita-Kyutoku M, Sato M, Senzaki H, Takada H et al (2004) Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colon 201 human colon cancer cells. Nutr Cancer 50:71–79. doi:10.1207/s15327914nc5001_10

    Article  PubMed  CAS  Google Scholar 

  13. Hofmanova J, Vaculova A, Kozubik A (2005) Polyunsaturated fatty acids sensitize human colon adenocarcinoma HT-29 cells to death receptor mediated apoptosis. Cancer Lett 218:33–41. doi:10.1016/j.canlet.2004.07.038

    Article  PubMed  CAS  Google Scholar 

  14. Hofmanova J, Vaculova A, Lojek A, Kozubik A (2005) Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in human HT-29 human colon adenocarcinoma cells. Eur J Nutr 44:40–51. doi:10.1007/s00394-004-0490-2

    Article  PubMed  CAS  Google Scholar 

  15. Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M (1996) Effect of enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 334:1557–1560. doi:10.1056/NEJM199606133342401

    Article  PubMed  CAS  Google Scholar 

  16. Calviello G, Serini S, Piccione E (2007) N-3 polyunsaturated fatty acids and prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem 14:3059–3069. doi:10.2174/092986707782793934

    Article  PubMed  CAS  Google Scholar 

  17. Lupton JR (2004) Microbial degradation products influence colon cancer risk: the butyrate controversy. J Nutr 134:479–482

    PubMed  CAS  Google Scholar 

  18. von Engelhardt W, Bartels J, Kirschberger S, Meyer zu Düttingdorf HD, Busche R (1998) Role of short-chain fatty acids in the hind gut. Vet Q 20(suppl 3):S52–S59

    Google Scholar 

  19. Le Leu R, Hu Y, Young GP (2002) Effects of resistant starch and non-starch polysaccharides on colonic luminal environment and genotoxin-induced apoptosis in the rat. Carcinogenesis 23:713–719. doi:10.1093/carcin/23.5.713

    Article  PubMed  CAS  Google Scholar 

  20. Sanguansri L, Augustin MA (2006) Microencapsulation and delivery of omega-3 fatty acids. In: Shi J (ed) Functional food engineering technologies and processing. CRC Press, NY, pp 297–327

    Chapter  Google Scholar 

  21. Champagne CP, Fustier P (2007) Microencapsulation for improved deliver of bioactive compounds into foods. Curr Opin Biotechnol 18:184–190. doi:10.1016/j.copbio.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  22. Wallace JMW, McCabe AJ, Robson PJ, Keogh MK, Murray CA, Kelly PM et al (2000) Bioavailability of n-3 polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Ann Nutr Metab 44:157–162. doi:10.1159/000012839

    Article  PubMed  CAS  Google Scholar 

  23. Lemprecht A, Schafer U, Lehr CM (2001) Influences of process parameters on preparation of micro particle used as a carrier system for Ω-3 unsaturated fatty acid ethyl esters used in supplementary nutrition. J Microencapsul 18:347–357. doi:10.1080/02652040010000433

    Article  Google Scholar 

  24. Kolanowski W, Laufenberg G, Kunz B (2004) Fish oil stabilisation by microencapsulation with modified cellulose. Int J Food Sci Nutr 55:333–343. doi:10.1080/09637480410001725157

    Article  PubMed  CAS  Google Scholar 

  25. Tozaki H, Komoike J, Tada C, Maruyama T, Terabe T, Suzuki T et al (1997) Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. J Pharm Sci 86:1016–1021. doi:10.1021/js970018g

    Article  PubMed  CAS  Google Scholar 

  26. Morishita M, Kajita M, Suzuki A, Takayama K, Chiba Y, Tokiwa S et al (2000) The dose-related hypoglycaemic effects of insulin emulsions incorporating highly purified EPA and DHA. Int J Pharm 201:175–185. doi:10.1016/S0378-5173(00)00411-7

    Article  PubMed  CAS  Google Scholar 

  27. Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1998) Design of microencapsulated chitosan microspheres for colonic delivery. J Control Release 52:109–118. doi:10.1016/S0168-3659(97)00203-4

    Article  PubMed  CAS  Google Scholar 

  28. Augustin MA, Sanguansri P, Htoon A (2008) Functional performance of a resistant starch ingredient modified using a microfluidiser. Innov Food Sci Emerg Tech 9:224–231. doi:10.1016/j.ifset.2007.11.003

    Article  CAS  Google Scholar 

  29. Pharmacopeia US (2000) National formulatory (USP 24 NF 19). Rockville, MD

  30. Stahl GE, Fayer JC, Ling SC, Watkins JB (1991) Comparison of nonabsorbable markers Poly R-478 and [14C] PEG-4000 for use in developmental absorption studies. J Pediatr Gastroenterol Nutr 12:485–493. doi:10.1097/00005176-199105000-00013

    Article  PubMed  CAS  Google Scholar 

  31. Tuleu C, Andrieux C, Cherbuy C, Darcy-Vrillon B, Duee PH, Chaumeil JC (2001) Colonic delivery of sodium butyrate via oral route: acrylic coating design of pellets and in vivo evaluation in rats. Methods Find Exp Clin Pharmacol 23:245–253. doi:10.1358/mf.2001.23.5.662119

    Article  PubMed  CAS  Google Scholar 

  32. Nilsson A, Hjelte L, Strandvik B (1992) Incorporation of dietary [14C]arachidonic acid and [3H]eicosapentaenoic acid into tissue lipids during absorption of a fish oil emulsion. J Lipid Res 33:1295–1305

    PubMed  CAS  Google Scholar 

  33. Nilsson A, Hjelte L, Strandvik B (1996) Metabolism of orally fed [3H]-eicosapentaenoic acid and [14C]-arachidonic acid in essential fatty acid-deficient rats. Scand J Clin Lab Invest 56:219–227. doi:10.3109/00365519609088611

    Article  PubMed  CAS  Google Scholar 

  34. Patten GS, Bird AR, Topping DL, Abeywardena MY (2004) Effects of convenience rice congee supplemented diets on guinea pig whole animal and gut growth, caecal digesta SCFA and in vitro contractility. Asia Pac J Clin Nutr 13:92–100

    PubMed  CAS  Google Scholar 

  35. Patten GS, Conlon MA, Bird AR, Adams MJ, Topping DL, Abeywardena MY (2006) Interactive effects of dietary resistant starch and fish oil on short-chain fatty acid production and agonist-induced contractility in ileum of young rats. Dig Dis Sci 51:254–261. doi:10.1007/s10620-006-3121-3

    Article  PubMed  CAS  Google Scholar 

  36. Park HS, Lee JY, Cho SH, Baek HJ, Lee SJ (2002) Colon delivery of prednisolone based on chitosan coated polysaccharide tablets. Arch Pharm Res 25:964–968

    Article  PubMed  CAS  Google Scholar 

  37. Shinohara H, Williams C, Koldovsky O (1995) The use of Poly R-478 as a marker to determine gastric emptying and intestinal propulsive motility in suckling rats. Physiol Res 44:281–286

    PubMed  CAS  Google Scholar 

  38. Hussein Z, Friedman M (1990) Release and absorption characteristics of novel theophylline sustained-release formulations: in vitro-in vivo correlation. Pharm Res 7:1167–1171. doi:10.1023/A:1015988410977

    Article  PubMed  CAS  Google Scholar 

  39. Aiedah K, Taha MO (1999) Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems. Arch Pharm 332:103–107. doi:10.1002/(SICI)1521-4184(19993)332:3≤103::AID-ARDP103≥3.0.CO;2-U

    Article  Google Scholar 

  40. Owen AJ, Peter-Przyborowska BA, Hoy AJ, McLennan PL (2004) Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition. Lipids 39:955–961. doi:10.1007/s11745-004-1317-0

    Article  PubMed  CAS  Google Scholar 

  41. Patten GS, Adams MJ, Dallimore JA, Abeywardena MY (2005) Dietary fish oil dose-response effects on ileal phospholipid fatty acids and contractility. Lipids 40:925–929. doi:10.1007/s11745-005-1453-6

    Article  PubMed  CAS  Google Scholar 

  42. Berk PD, Stump DD (1999) Mechanisms of cellular uptake of long chain free fatty acids. Mol Cell Biochem 192:17–31. doi:10.1023/A:1006832001033

    Article  PubMed  CAS  Google Scholar 

  43. Bradbury MW, Berk PD (2004) Lipid metabolism in hepatic steatosis. Clin Liver Dis 8:639–671. doi:10.1016/j.cld.2004.04.005

    Article  PubMed  Google Scholar 

  44. Bretillon L, Chardigny JM, Sebedio JL, Poullain D, Noel JP, Vatele JM (1998) Oxidative metabolism of (1–14C) mono-trans isomers of linoleic and α-linolenic acids in the rat. Biochim Biophys Acta 1390:207–214

    PubMed  CAS  Google Scholar 

  45. Cunnane SC (2001) Application of new methods and analytical approaches to research on polyunsaturated fatty acid homeostasis. Lipids 36:975–979. doi:10.1007/s11745-001-0808-3

    Article  PubMed  CAS  Google Scholar 

  46. Lenaerts V, Moussa I, Dumoulin Y, Mebsout F, Chouinard F, Szabo P et al (1998) Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release 53:225–234. doi:10.1016/S0168-3659(97)00256-3

    Article  PubMed  CAS  Google Scholar 

  47. Chourasia MK, Jain SK (2004) Polysaccharides for colon targeted drug delivery. Drug Deliv 11:129–148. doi:10.1080/10717540490280778

    Article  PubMed  CAS  Google Scholar 

  48. Bird AR, Vuaran MS, King RA, Noakes M, Keough J, Morell MK et al (2007) Wholegrain foods from novel high amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects. Br J Nutr 99:1032–1040

    PubMed  Google Scholar 

  49. Cherbut C, Ferrier L, Roze C, Anini Y, Blottiere H, Lecannu G et al (1998) Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol 275:G1414–G1422

    Google Scholar 

  50. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    PubMed  CAS  Google Scholar 

  51. Kossena GA, Charman WN, Boyd BJ, Dunstan DE, Porter CJ (2004) Probing drug solubilisation patterns in the gastrointestinal tracts after administration of lipid-based delivery systems: a phase diagram approach. J Pharm Sci 93:332–338. doi:10.1002/jps.10554

    Article  PubMed  CAS  Google Scholar 

  52. Fujita F, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839. doi:10.1111/j.1365-2958.2007.05947.x

    Article  PubMed  CAS  Google Scholar 

  53. Jorgensen JR, Fitch MD, Mortensen PB, Fleming SE (2002) Absorption and metabolism of octanoate by the rat colon in vivo: concentration dependency and influence of alternate fuels. Gut 51:76–81. doi:10.1136/gut.51.1.76

    Article  PubMed  CAS  Google Scholar 

  54. Calderaro V, De Simone B, Giovane A, Quaggliuolo L, Servillo L, Giordano C et al (1991) Mechanism of arachidonic acid transport across rabbit distal colonic mucosa. Am J Physiol 261:G451–G457

    PubMed  CAS  Google Scholar 

  55. Chen ZY, Itsfan NW (2000) Docosahexaenoic acid is a potent inducer of apoptosis in HT-29 colon cancer cells. Prostaglandins Leukot Essent Fatty Acids 63:301–308. doi:10.1054/plef.2000.0218

    Article  PubMed  CAS  Google Scholar 

  56. Narayanan BA, Narayanan NK, Reddy BS (2001) Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 19:1255–1262

    PubMed  CAS  Google Scholar 

  57. Murray NR, Weems C, Chen L, Leon J, Yu W, Davidson LA et al (2002) Protein kinase C betaII and TGFbetaRII in omega-3 fatty acid mediated inhibition of colon carcinogenesis. J Cell Biol 157:915–920. doi:10.1083/jcb.200201127

    Article  PubMed  CAS  Google Scholar 

  58. Calviello G, Resci F, Serini S, Piccioni E, Toesca A, Boninsegna A et al (2007) Docosahexaenoic acid induces proteosome-dependent degradation of β-catenin, down-regulation of surviving and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 28:1202–1209. doi:10.1093/carcin/bgl254

    Article  PubMed  CAS  Google Scholar 

  59. Camuesco D, Comalada D, Concha A, Nieto A, Sierra S, Xaus J et al (2006) Intestinal anti-inflammatory activity of combined quercetrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin Nutr 25:466–476. doi:10.1016/j.clnu.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  60. Turner D, Zlotkin SH, Shah PS, Griffiths AM (2007) Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 18(2):CD006320

    Google Scholar 

Download references

Acknowledgments

The authors thank Michael Adams for animal husbandry and fatty acid analysis and Li Jiang Cheng, Rangika Weerakkody and Zhiping Shen for fatty acid analysis and in vitro oil release studies. Thanks also to Lynne Cobiac, Trevor Lockett and David Topping for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Patten.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10620-011-1618-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patten, G.S., Augustin, M.A., Sanguansri, L. et al. Site Specific Delivery of Microencapsulated Fish Oil to the Gastrointestinal Tract of the Rat. Dig Dis Sci 54, 511–521 (2009). https://doi.org/10.1007/s10620-008-0379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0379-7

Keywords

Navigation