Skip to main content

Advertisement

Log in

Detection of Alzheimer’s disease using grey wolf optimization based clustering algorithm and deep neural network from magnetic resonance images

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

The automated magnetic resonance imaging (MRI) processing techniques are gaining more importance in Alzheimer disease (AD) recognition, because it effectively diagnosis the pathology of the brain. Currently, computer aided diagnosis based on image analysis is an emerging tool to support AD diagnosis. In this research study, a new system is developed for enhancing the performance of AD recognition. Initially, the brain images were acquired from three online datasets and one real-time dataset such as AD Neuroimaging Initiative (ADNI), Minimal Interval Resonance Imaging in AD (MIRIAD), and Open Access Series of Imaging Studies (OASIS) and National Institute of Mental Health and Neuro Sciences (NIMHANS). Then, adaptive histogram equalization (AHE) and grey wolf optimization based clustering algorithm (GWOCA) were applied for denoising and segmenting the brain tissues; grey matter (GM), cerebro-spinal fluid (CSF), and white matter (WM) from the acquired images. After segmentation, the feature extraction was performed by utilizing dual tree complex wavelet transform (DTCWT), local ternary pattern (LTP) and Tamura features to extract the feature vectors from the segmented brain tissues. Then, ReliefF methodology was used to select the active features from the extracted feature vectors. Finally, the selected active feature values were classified into three classes [AD, normal and mild cognitive impairment (MCI)] utilizing deep neural network (DNN) classifier. From the simulation result, it is clear that the proposed framework achieved good performance in disease classification and almost showed 2.2–6% enhancement in accuracy of all four datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AHE:

Adaptive histogram equalization

AD:

Alzheimer disease

ADNI:

Alzheimer Disease Neuroimaging Initiative

CSF:

Cerebro-spinal fluid

CNN:

Convolutional neural network

DM2L:

Deep multitask multichannel learning

DNN:

Deep neural network

GLCM:

Gray level co-occurrence matrix

GM:

Grey matter

GWOCA:

Grey wolf optimization based clustering algorithm

HMM:

Hidden Markov models

LBP:

Local binary pattern

LTP:

Local ternary pattern

LSTM:

Long short-term memory

LR:

Lucy Richardson

MRI:

Magnetic resonance imaging

MCI:

Mild cognitive impairment

MIRIAD:

Minimal Interval Resonance Imaging in AD

NIMHANS:

National Institute of Mental Health and Neuro Sciences

NN:

Neural network

OASIS:

Open Access Series of Imaging Studies

PDF:

Probability distribution function

DTCWT:

Tree complex wavelet transform

WM:

White matter

\(A\) :

Partitioned instances

\(A\,\mathrm{a}\mathrm{n}\mathrm{d}\,C\) :

Coefficient vectors

\(c\) :

Centre pixel

\(C\) :

Class of cluster

\({C}^{*}\) :

Optimal clusters

\(D\) :

Distance

\(f(X,C)\) :

Statistical function

\({g(Z}_{j})\) :

Pooling

\({g}_{0}\left(n\right)\) and \({g}_{1}\left(n\right)\) :

Low and high pass filter for second wavelet tree

\({h}_{0}\left(n\right)\) and \({h}_{1}\left(n\right)\) :

Low and high pass filter for first wavelet tree

\({H}_{j}\) :

Nearest hit instances

\(k\) :

Cluster center

\(m\) :

Hidden nodes

\({M}_{j}\) :

Nearest miss instances

\(N\) :

Number of population

\({O}_{f}\) :

Optimized value

\(p\) :

Neighbouring pixel

\(\widehat{p}j\) :

Sparsity penalty

\({\overrightarrow{\mathrm{r}}}_{1}\) and \({\overrightarrow{\mathrm{r}}}_{2}\) :

Random values

\({r}_{i}\) :

Randomly picked the instances

\(t\) :

Current iteration

\({T}_{c}\) :

Threshold constant

\({w}_{ij}\) :

Model parameter

\(W\left[A\right]\) :

Quality estimation

\({x}_{1},{x}_{2},\ldots,{x}_{n}\) :

Input data instances

\({\widehat{x}}_{i}\) :

Auto encoder hidden unit

\({X}_{prey}\) :

Position of prey

\({X}_{wolf}\) :

Grey wolf position

\(\alpha\) :

Alpha solution

\(\beta\) :

Beta solution

\({\Delta}H\) :

Horizontal convolved grey-scale images

\({\Delta}V\) :

Vertical convolved grey-scale images

\(\delta\) :

Delta solution

\(\theta\) :

Directionality

\(\lambda\) :

Weight delay

\({\mu }_{4}\) :

Fourth moment of mean

\(\sigma\) :

Variance

\({\Psi }_{h}\left(t\right)\) :

First wavelet tree

\({\Psi }_{g}\left(t\right)\) :

Second wavelet tree

\(\Omega\) :

Omega solution

References

  1. Ghosh, S., Chandra, A., Mudi, R.K.: A novel fuzzy pixel intensity correlation based segmentation algorithm for early detection of Alzheimer’s disease. Multimed. Tools Appl. 78(9), 12465–12489 (2019)

    Article  Google Scholar 

  2. Counts, S.E., Ikonomovic, M.D., Mercado, N., Vega, I.E., Mufson, E.J.: Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 14(1), 35–53 (2017)

    Article  Google Scholar 

  3. Duraisamy, B., Shanmugam, J.V., Annamalai, J.: Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network. Brain Imaging Behav. 13(1), 87–110 (2019)

    Article  Google Scholar 

  4. Baskar, D., Jayanthi, V.S., Jayanthi, A.N.: An efficient classification approach for detection of Alzheimer’s disease from biomedical imaging modalities. Multimed. Tools Appl. 78(10), 12883–12915 (2019)

    Article  Google Scholar 

  5. Tan, X., Liu, Y., Li, Y., Wang, P., Zeng, X., Yan, F., Li, X.: Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning. Biomed. Eng. Online 17(1), 49 (2018)

    Article  Google Scholar 

  6. Magalhães, T.N.C., Weiler, M., Teixeira, C.V.L., Hayata, T., Moraes, A.S., Boldrini, V.O., Dos Santos, L.M., de Campos, B.M., de Rezende, T.J.R., Joaquim, H.P.G., Talib, L.L.: Systemic inflammation and multimodal biomarkers in amnestic mild cognitive impairment and Alzheimer’s disease. Mol. Neurobiol. 55(7), 5689–5697 (2018)

    Article  Google Scholar 

  7. Bhateja, V., Moin, A., Srivastava, A., Bao, L.N., Lay-Ekuakille, A., Le, D.N.: Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer’s disease. Rev. Sci. Instrum. 87(7), 074303 (2016)

    Article  Google Scholar 

  8. Escudero, J., Ifeachor, E., Zajicek, J.P., Green, C., Shearer, J., Pearson, S., Alzheimer’s Disease Neuroimaging Initiative: Machine learning-based method for personalized and cost-effective detection of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 60(1), 164–168 (2012)

    Article  Google Scholar 

  9. Nguyen, T.G., Phan, T.V., Hoang, D.T., Nguyen, T.N., So-In, C.: Efficient SDN-based traffic monitoring in IoT networks with double deep Q-network. In: International Conference on Computational Data and Social Networks, December 2020 (pp. 26–38). Springer, Cham (2020)

  10. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J. Biomed. Health Inform. 21(6), 1607–1616 (2017)

    Article  Google Scholar 

  11. Trambaiolli, L.R., Spolaôr, N., Lorena, A.C., Anghinah, R., Sato, J.R.: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease. Clin. Neurophysiol. 128(10), 2058–2067 (2017)

    Article  Google Scholar 

  12. Beheshti, I., Demirel, H., Alzheimer’s Disease Neuroimaging Initiative: Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magn. Reson. Imaging 34(3), 252–263 (2016)

    Article  Google Scholar 

  13. Ge, C., Qu, Q., Gu, I.Y.H., Jakola, A.S.: Multi-stream multi-scale deep convolutional networks for Alzheimer’s disease detection using MR images. Neurocomputing 350, 60–69 (2019)

    Article  Google Scholar 

  14. Xu, L., Wu, X., Chen, K., Yao, L.: Multi-modality sparse representation-based classification for Alzheimer’s disease and mild cognitive impairment. Comput. Methods Programs Biomed. 122(2), 182–190 (2015)

    Article  Google Scholar 

  15. Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Alzheimer’s Disease Neuroimaging Initiative: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 65, 167–175 (2013)

    Article  Google Scholar 

  16. Liu, X., Tosun, D., Weiner, M.W., Schuff, N., Alzheimer’s Disease Neuroimaging Initiative: Locally linear embedding (LLE) for MRI based Alzheimer’s disease classification. Neuroimage 83, 148–157 (2013)

    Article  Google Scholar 

  17. Aguilar, C., Westman, E., Muehlboeck, J.S., Mecocci, P., Vellas, B., Tsolaki, M., Kloszewska, I., Soininen, H., Lovestone, S., Spenger, C., Simmons, A.: Different multivariate techniques for automated classification of MRI data in Alzheimer’s disease and mild cognitive impairment. Psychiatry Res. Neuroimaging 212(2), 89–98 (2013)

    Article  Google Scholar 

  18. Sampath, R., Indumathi, J.: Earlier detection of Alzheimer disease using N-fold cross validation approach. J. Med. Syst. 42(11), 217 (2018)

    Article  Google Scholar 

  19. Tong, T., Gray, K., Gao, Q., Chen, L., Rueckert, D., Alzheimer’s Disease Neuroimaging Initiative: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion. Pattern Recognit. 63, 171–181 (2017)

    Article  Google Scholar 

  20. Beheshti, I., Demirel, H., Farokhian, F., Yang, C., Matsuda, H., Alzheimer’s Disease Neuroimaging Initiative: Structural MRI-based detection of Alzheimer’s disease using feature ranking and classification error. Comput. Methods Programs Biomed. 137, 177–193 (2016)

    Article  Google Scholar 

  21. Beheshti, I., Demirel, H., Alzheimer’s Disease Neuroimaging Initiative: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Comput. Biol. Med. 64, 208–216 (2015)

    Article  Google Scholar 

  22. Liu, M., Zhang, J., Nie, D., Yap, P.T., Shen, D.: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J. Biomed. Health Inform. 22(5), 1476–1485 (2018)

    Article  Google Scholar 

  23. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 66(5), 1195–1206 (2018)

    Article  Google Scholar 

  24. Islam, J., Zhang, Y.: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 5(2), 2 (2018)

    Article  Google Scholar 

  25. Chen, Y., Pham, T.D.: Development of a brain MRI-based hidden Markov model for dementia recognition. Biomed. Eng. Online 12(1), S2 (2013)

    Article  Google Scholar 

  26. Wei, J.K.E., Jahmunah, V., Pham, T.H., Oh, S.L., Ciaccio, E.J., Acharya, U.R., Yeong, C.H., Fabell, M.K.M., Rahmat, K., Vijayananthan, A., Ramli, N.: Automated detection of Alzheimer’s disease using Bi-directional Empirical Model Decomposition. Pattern Recognit. Lett. 135, 106–113 (2020)

    Article  Google Scholar 

  27. Sultan, S., Javed, A., Irtaza, A., Dawood, H., Dawood, H., Bashir, A.K.: A hybrid egocentric video summarization method to improve the healthcare for Alzheimer patients. J. Ambient Intell. Humaniz. Comput. 10(10), 4197–4206 (2019)

    Article  Google Scholar 

  28. Kamathe, R.S., Joshi, K.R.: A novel method based on independent component analysis for brain MR image tissue classification into CSF, WM and GM for atrophy detection in Alzheimer’s disease. Biomed. Signal Process. Control 40, 41–48 (2018)

    Article  Google Scholar 

  29. Park, A., Baek, S.J., Shen, A., Hu, J.: Detection of Alzheimer’s disease by Raman spectra of rat’s platelet with a simple feature selection. Chemom. Intell. Lab. Syst. 121, 52–56 (2013)

    Article  Google Scholar 

  30. Jo, T., Nho, K., Saykin, A.J.: Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11, 220 (2019)

    Article  Google Scholar 

  31. Goceri, E.: Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network. Int. J. Numer. Methods Biomed. Eng. 35(7), e3225 (2019)

    Article  MathSciNet  Google Scholar 

  32. Thomas, K.R., Edmonds, E.C., Eppig, J.S., Wong, C.G., Weigand, A.J., Bangen, K.J., Jak, A.J., Delano-Wood, L., Galasko, D.R., Salmon, D.P., Edland, S.D.: MCI-to-normal reversion using neuropsychological criteria in the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 15(10), 1322–1332 (2019)

    Article  Google Scholar 

  33. Li, H., Habes, M., Wolk, D.A., Fan, Y., Alzheimer’s Disease Neuroimaging Initiative: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dement. 15(8), 1059–1070 (2019)

    Article  Google Scholar 

  34. Malone, I.B., Cash, D., Ridgway, G.R., MacManus, D.G., Ourselin, S., Fox, N.C., Schott, J.M.: MIRIAD-Public release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage 70, 33–36 (2013)

    Article  Google Scholar 

  35. Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., Filippi, M., Alzheimer’s Disease Neuroimaging Initiative: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 21, 101645 (2019)

    Article  Google Scholar 

  36. Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey, D.J., Jack, C.R., Jagust, W.J., Shaw, L.M., Toga, A.W., Trojanowski, J.Q.: Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010)

    Article  Google Scholar 

  37. Tripathi, R., Kumar, J.K., Bharath, S., Marimuthu, P., Varghese, M.: Clinical validity of NIMHANS neuropsychological battery for elderly: a preliminary report. Indian J. Psychiatry 55(3), 279 (2013)

    Article  Google Scholar 

  38. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  39. Isa, I.S., Sulaiman, S.N., Mustapha, M., Karim, N.K.A.: Automatic contrast enhancement of brain MR images using Average Intensity Replacement based on Adaptive Histogram Equalization (AIR-AHE). Biocybern. Biomed. Eng. 37(1), 24–34 (2017)

    Article  Google Scholar 

  40. Park, J.G., Lee, C.: Skull stripping based on region growing for magnetic resonance brain images. Neuroimage 47(4), 1394–1407 (2009)

    Article  Google Scholar 

  41. Kapoor, S., Zeya, I., Singhal, C., Nanda, S.J.: A grey wolf optimizer based automatic clustering algorithm for satellite image segmentation. Procedia Comput. Sci. 115, 415–422 (2017)

    Article  Google Scholar 

  42. Athertya, J.S., Kumar, G.S., Govindaraj, J.: Detection of Modic changes in MR images of spine using local binary patterns. Biocybern. Biomed. Eng. 39(1), 17–29 (2019)

    Article  Google Scholar 

  43. Yang, P., Yang, G.: Feature extraction using dual-tree complex wavelet transform and Gray level co-occurrence matrix. Neurocomputing 197, 212–220 (2016)

    Article  Google Scholar 

  44. Howarth, P., Rüger, S.: Evaluation of texture features for content-based image retrieval. In: International Conference on Image and Video Retrieval, pp. 326–334. Springer, Berlin (2004)

  45. Reyes, O., Morell, C., Ventura, S.: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context. Neurocomputing 161, 168–182 (2015)

    Article  Google Scholar 

  46. Saouli, R., Akil, M., Kachouri, R.: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput. Methods Programs Biomed. 166, 39–49 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halebeedu Subbaraya Suresha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresha, H.S., Parthasarathy, S.S. Detection of Alzheimer’s disease using grey wolf optimization based clustering algorithm and deep neural network from magnetic resonance images. Distrib Parallel Databases 40, 627–655 (2022). https://doi.org/10.1007/s10619-021-07345-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-021-07345-y

Keywords

Navigation