Skip to main content

Advertisement

Log in

PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CDS:

Coding sequence

DAPI:

4,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

EF-1α:

Elongation factor 1α-subunit

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HEK:

Human embryonic kidney

IL:

Interleukin

LPS:

Lipopolysaccharide

LRR:

Leucine-rich repeat

MD2:

Myeloid differentiation protein 2

MTS/PMS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)/phenazine methosulfate

OPC:

Oligodendrocyte precursor cell

PAMP:

Pathogen-associated molecular patterns

PBS:

Phosphate buffered saline

PRR:

Pattern-recognition receptor

PVDF:

Polyvinylidenedifluoride

TLR:

Toll-like receptor

References

  • Belvin MP, Anderson KVA (1996) Conserved signaling pathway: the Drosophila Toll–dorsal pathway. Annu Rev Cell Dev Biol 12:393–416

    Article  CAS  Google Scholar 

  • Chen F, Wang M, O’Connor JP, He M, Tripathi T, Harrison LE (2003) Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappa/beta. J Cell Biochem 90:732–744

    Article  CAS  Google Scholar 

  • Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  CAS  Google Scholar 

  • Ghasemi S, Ghaedi K, Nasr Esfahani MH, Tanhaei S, Rabeei F, Karbalaii K, Baharvand H, Esmaeili A (2010) Intra-nuclear localization of EGFP-mouse PPARγ1in bovine fibroblast cells. Yakhteh Med J12:97–104

    Google Scholar 

  • Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  CAS  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J Immunol 162:3749–3752

    CAS  Google Scholar 

  • Hultmark D (2006) Insect immunology: ancient relationships. Nature 367:116–117

    Article  Google Scholar 

  • Ji Y, Liu J, Wang Z, Liu N, Gou W (2009) PPAR gamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab Invest 89:887–902

    Article  CAS  Google Scholar 

  • Ji Y, Liu J, Wang Z, Li Z (2011) PPARγ agonist rosiglitazone ameliorates LPS-induced inflammation in vascular smooth muscle cells via the TLR4/TRIF/IRF3/IP-10 signaling pathway. Cytokine 55:409–419

    Article  CAS  Google Scholar 

  • Jung UJ, Torrejon C, Chang CL, Hamai H, Worgall TS, Deckelbaum RJ (2012) Fatty acids regulate endothelial lipase and inflammatory markers in macrophages and in mouse aorta: a role for PPARγ. Arterioscler Thromb Vasc Biol 32:2929–2937

    Article  CAS  Google Scholar 

  • Kawai T, Akira S (2006) TLR signalling. Cell Death Diff 13:816–825

    Article  CAS  Google Scholar 

  • Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32

    Article  CAS  Google Scholar 

  • Kitaoka Y, Munemasa Y, Nakazawa T, Ueno S (2007) NMDA-induced interleukin-1beta expression is mediated by nuclear factor-kappa B p65 in the retina. Brain Res 1142:247–255

    Article  CAS  Google Scholar 

  • Lanza AM, Kim DS, Alper HS (2013) Evaluating the influence of selection markers on obtaining selected pool s and stable cell lines in human cells. Biotechnol J 8:811–821

    Article  CAS  Google Scholar 

  • Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, Golenbock DT, Espevik T (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277:47834–47843

    Article  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus control the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  Google Scholar 

  • Miyake K, Ogata H, Nagai Y, Akashi S, Kimoto M (2000) Innate recognition of lipopolysaccharide by Toll-like receptor 4/MD-2 and RP105/MD-1. J Endotoxin Res 6:389–391

    Article  CAS  Google Scholar 

  • Muta T, Takeshige K (2001) Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem 268:4580–4589

    Article  CAS  Google Scholar 

  • Nagai Y, Shimazu R, Ogata H, Akashi S, Sudo K, Yamasaki H, Hayashi S, Iwakura Y, Kimoto M, Miyake K (2002) Requirement for MD-1 in cell surface expression of RP105/CD180 and B-cell responsiveness to lipopolysaccharide. Blood 99:1699–1705

    Article  CAS  Google Scholar 

  • Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappa B in macrophages. Immunology 125:344–358

    Article  CAS  Google Scholar 

  • Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59:278–292

    Article  CAS  Google Scholar 

  • Peymani M, Ghoochani A, Ghaedi K, Karamali F, Karbalaie K, Kiani-Esfahani A, Rabiee F, Nasr-Esfahani MH, Baharvand H (2013) Dual effects of peroxisome proliferator-activated receptor γ on embryonic stem cell self-renewal in presence and absence of leukemia inhibitory factor. Eur J Cell Biol 92:160–168

    Article  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  Google Scholar 

  • Qureshi ST, Larivière L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  CAS  Google Scholar 

  • Remels AH, Langen RC, Gosker HR, Russell AP, Spaapen F, Voncken JW, Schrauwen P, Schols AM (2009) PPAR gamma inhibits NF-kappa B-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab 297:E174–E183

    Article  CAS  Google Scholar 

  • Sasaki M, Jordan P, Welbourne T, Minagar A, Joh T, Itoh M, Elrod JW, Alexander JS (2005) Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha. BMC Physiol 5:3

    Article  Google Scholar 

  • Schromm AB, Lien E, Henneke P, Chow JC, Yoshimura A, Heine H, Latz E, Monks BG, Schwartz DA, Miyake K, Golenbock DT (2001) Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 194:79–88

    Article  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol 286:C739–C744

    Article  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin V 1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  Google Scholar 

  • Wakabayashi Y, Kobayashi M, Akashi-Takamura S, Tanimura N, Konno K, Takahashi K, Ishii K, Mizutani T, Iba H, Kouro T, Takaki S, Takatsu K, Oda Y, Ishihama Y, Saitoh S, Miyake K (2006) A protein associated with Toll-like receptor 4 regulates cell surface expression of TLR4. J Immunol 177:1772–1779

    Article  CAS  Google Scholar 

  • Wang CZ, Zhang Y, Li XD, Hu Y, Fang ZG, Lin DJ, Xiao RZ, Huang RW, Huang HQ, Liu PQ, Liu JJ (2011) PPARγ agonist suppresses TLR4 expression and TNF-α production in LPS stimulated monocyte leukemia cells. Cell Biochem Biophys 60:167–172

    Article  CAS  Google Scholar 

  • Wasserman SAA (1993) Conserved signal transduction pathway regulating the activity of rel-like proteins dorsal and NF-кB. Mol Biol Cell 4:767–771

    Article  CAS  Google Scholar 

  • Yang H, Young DW, Gusovsky F, Chow JC (2000) Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J Biol Chem 275:20861–20866

    Article  CAS  Google Scholar 

  • Yin Y, Hou G, Li ER, Wang QY, Kang J (2013) Regulation of cigarette smoke-induced toll-like receptor 4 expression by peroxisome proliferator-activated receptor-gamma agonists in bronchial epithelial cells. Respirology 18:30–39

    Article  Google Scholar 

  • Yin Y, Hou G, Li E, Wang Q, Kang J (2014) PPAR Gamma agonists regulate tobacco smoke-induced toll like receptor 4 expression in alveolar macrophages. Respir Res 15:28

    Article  Google Scholar 

  • Zhang F, Liu F, Yan M, Ji H, Hu L, Li X, Qian J, He X, Zhang L, Shen A, Cheng C (2010) Peroxisome proliferator-activated receptor-gamma agonists suppress iNOS expression induced by LPS in rat primary Schwann cells. J Neuroimmunol 218:36–47

    Article  CAS  Google Scholar 

  • Zhang LL, Gao CY, Fang CQ, Wang YJ, Gao D, Yao GE, Xiang J, Wang JZ, Li JC (2011) PPARγ attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovasc Res 92:484–493

    Article  CAS  Google Scholar 

  • Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC, Gao C (2011) Peroxisome proliferator-activated receptor gamma negatively regulates IFN-beta production in Toll-like receptor (TLR) 3- and TLR4-stimulated macrophages by preventing interferon regulatory factor 3 binding to the IFN-beta promoter. J Biol Chem 286:5519–5528

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None of the authors has any conflicts of interest to disclose and all authors support submission to this journal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mir Davood Omrani, Kamran Ghaedi or Mohammad Hossein Nasr-Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darehgazani, R., Peymani, M., Hashemi, MS. et al. PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2. Cytotechnology 68, 1337–1348 (2016). https://doi.org/10.1007/s10616-015-9893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9893-6

Keywords

Navigation