Skip to main content
Log in

Beyond annexin V: fluorescence response of cellular membranes to apoptosis

  • Review Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Dramatic changes in the structure of cell membranes on apoptosis allow easy, sensitive and non-destructive analysis of this process with the application of fluorescence methods. The strong plasma membrane asymmetry is present in living cells, and its loss on apoptosis is commonly detected with the probes interacting strongly and specifically with phosphatidylserine (PS). This phospholipid becomes exposed to the cell surface, and the application of annexin V labeled with fluorescent dye is presently the most popular tool for its detection. Several methods have been suggested recently that offer important advantages over annexin V assay with the ability to study apoptosis by spectroscopy of cell suspensions, flow cytometry and confocal or two-photon microscopy. The PS exposure marks the integrated changes in the outer leaflet of cell membrane that involve electrostatic potential and hydration, and the attempts are being made to provide direct probing of these changes. This review describes the basic mechanisms underlying the loss of membrane asymmetry during apoptosis and discusses, in comparison with the annexin V-binding assay, the novel fluorescence techniques of detecting apoptosis on cellular membrane level. In more detail we describe the detection method based on smart fluorescent dye F2N12S incorporated into outer leaflet of cell membrane and reporting on apoptotic cell transformation by easily detectable change of the spectral distribution of fluorescent emission. It can be adapted to any assay format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alam IS, Neves AA, Witney TH, Boren J, Brindle KM (2010) Comparison of the C2A domain of synaptotagmin-I and annexin-V as probes for detecting cell death. Bioconjug Chem 21:884–891

    Article  CAS  Google Scholar 

  • Altschuh D, Oncul S, Demchenko AP (2006) Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 19:459–477

    Article  CAS  Google Scholar 

  • Balasubramanian K, Schroit AJ (2003) Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701–734

    Article  CAS  Google Scholar 

  • Balasubramanian K, Bevers EM, Willems GM, Schroit AJ (2001) Binding of annexin V to membrane products of lipid peroxidation. Biochemistry 40:8672–8676

    Article  CAS  Google Scholar 

  • Blankenberg FG, Norfray JF (2011) Multimodality molecular imaging of apoptosis in oncology. Am J Roentgenol 197:308–317

    Article  Google Scholar 

  • Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050

    CAS  Google Scholar 

  • Bose S, Tuunainen I, Parry M, Medina OP, Mancini G, Kinnunen PK (2004) Binding of cationic liposomes to apoptotic cells. Anal Biochem 331:385–394

    Article  CAS  Google Scholar 

  • Brumatti G, Sheridan C, Martin SJ (2008) Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods 44:235–240

    Article  CAS  Google Scholar 

  • Coppola JM, Ross BD, Rehemtulla A (2008) Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res 14:2492–2501

    Article  CAS  Google Scholar 

  • Demchenko AP (2005a) The future of fluorescence sensor arrays. Trends Biotech 23:456–460

    Article  CAS  Google Scholar 

  • Demchenko AP (2005b) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22

    Article  CAS  Google Scholar 

  • Demchenko AP (2005c) The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 5:1210–1223

    Article  CAS  Google Scholar 

  • Demchenko AP (2006) Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Lett 580:2951–2957

    Article  CAS  Google Scholar 

  • Demchenko AP (2009) Introduction to fluorescence sensing. Springer, Amsterdam

    Book  Google Scholar 

  • Demchenko AP (2010) The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc 20:1099–1128

    Article  Google Scholar 

  • Demchenko AP (2012) Cellular membrane changes on apoptosis. Fluorescence detection. Exp Oncol (Kiev) 34 (in press)

  • Demchenko AP, Yesylevskyy SO (2009) Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 160:63–84

    Article  CAS  Google Scholar 

  • Demchenko AP, Klymchenko AS, Pivovarenko VG, Ercelen S, Duportail G, Mely Y (2003) Multiparametric color-changing fluorescence probes. J Fluoresc 13:291–295

    Article  CAS  Google Scholar 

  • Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    Article  CAS  Google Scholar 

  • DiVittorio KM, Johnson JR, Johansson E, Reynolds AJ, Jolliffe KA, Smith BD (2006) Synthetic peptides with selective affinity for apoptotic cells. Org Biomol Chem 4:1966–1976

    Article  CAS  Google Scholar 

  • Dong HP, Holth A, Ruud MG, Emilsen E, Risberg B, Davidson B (2011) Measurement of apoptosis in cytological specimens by flow cytometry: comparison of Annexin V, caspase cleavage and dUTP incorporation assays. Cytopathology 22:365–372

    Article  CAS  Google Scholar 

  • Downey MJ, Jeziorska DM, Ott S, Tamai TK, Koentges G, Vance KW, Bretschneider T (2011) Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution. PLoS One 6:e27886

    Article  CAS  Google Scholar 

  • Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG, Lineberry N, Bogyo M (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973

    Article  CAS  Google Scholar 

  • Elliott JI, Surprenant A, Marelli-Berg FM, Cooper JC, Cassady-Cain RL, Wooding C, Linton K, Alexander DR, Higgins CF (2005) Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 7:808–816

    Article  CAS  Google Scholar 

  • Erwig LP, Henson PM (2008) Clearance of apoptotic cells by phagocytes. Cell Death Differ 15:243–250

    Article  CAS  Google Scholar 

  • Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JM (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349

    Article  CAS  Google Scholar 

  • Foller M, Huber SM, Lang F (2008) Erythrocyte programmed cell death. IUBMB Life 60:661–668

    Article  Google Scholar 

  • Gasser JP, Hehl M, Millward TA (2009) A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells. Anal Biochem 384:49–55

    Article  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  Google Scholar 

  • Hanshaw RG, Smith BD (2005) New reagents for phosphatidylserine recognition and detection of apoptosis. Bioorg Med Chem 13:5035–5042

    Article  CAS  Google Scholar 

  • Hope-Roberts M, Horobin RW, Wainwright M (2011) Identifying apoptotic cells with the 3-hydroxyflavone derivative F2N12S, a ratiometric fluorescent small molecule probe selective for plasma membranes: a possible general mechanism for selective uptake into apoptotic cells. Biotech Histochem 86:255–261

    Article  CAS  Google Scholar 

  • Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, Kawai K (2000) Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 477:1–7

    Article  CAS  Google Scholar 

  • Kerbiriou-Nabias D, Geldwerth-Feniger D (2007) Exposition membranaire de la phosphatidylsérine et activité procoagulante des plaquettes. Hématologie 13:94–109

    CAS  Google Scholar 

  • Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788:64–71

    Article  CAS  Google Scholar 

  • Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol 50:343–352

    Article  CAS  Google Scholar 

  • Kim YE, Chen J, Chan JR, Langen R (2010) Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration. Nat Methods 7:67–73

    Article  CAS  Google Scholar 

  • Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J Chem 27:1336–1343

    Article  CAS  Google Scholar 

  • Korngold EC, Jaffer FA, Weissleder R, Sosnovik DE (2008) Noninvasive imaging of apoptosis in cardiovascular disease. Heart Fail Rev 13:163–173

    Article  Google Scholar 

  • Koulov AV, Hanshaw RG, Stucker KA, Lakshmi C, Smith BD (2005) Biophysical studies of a synthetic mimic of the apoptosis-detecting protein annexin V. Israel J Chem 45:373–379

    Article  CAS  Google Scholar 

  • Krampe B, Al-Rubeai M (2010) Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 62:175–188

    Article  Google Scholar 

  • Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  CAS  Google Scholar 

  • Kuijpers TW, Maianski NA, Tool AT, Becker K, Plecko B, Valianpour F, Wanders RJ, Pereira R, Van Hove J, Verhoeven AJ, Roos D, Baas F, Barth PG (2004) Neutrophils in Barth syndrome (BTHS) avidly bind annexin-V in the absence of apoptosis. Blood 103:3915–3923

    Article  CAS  Google Scholar 

  • Laakko T, King L, Fraker P (2002) Versatility of merocyanine 540 for the flow cytometric detection of apoptosis in human and murine cells. J Immunol Methods 261:129–139

    Article  CAS  Google Scholar 

  • Le Gac S, Vermes I, van den Berg A (2006) Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging. Nano Lett 6:1863–1869

    Article  Google Scholar 

  • Lee BW, Olin MR, Johnson GL, Griffin RJ (2008) In vitro and in vivo apoptosis detection using membrane permeant fluorescent-labeled inhibitors of caspases. Methods Mol Biol 414:109–135

    CAS  Google Scholar 

  • Martinez MM, Reif RD, Pappas D (2010a) Detection of apoptosis: a review of conventional and novel techniques. Anal Methods 2:996–1004

    Article  CAS  Google Scholar 

  • Martinez MM, Reif RD, Pappas D (2010b) Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal Bioanal Chem 396:1177–1185

    Article  CAS  Google Scholar 

  • Matsura T, Togawa A, Kai M, Nishida T, Nakada J, Ishibe Y, Kojo S, Yamamoto Y, Yamada K (2005) The presence of oxidized phosphatidylserine on Fas-mediated apoptotic cell surface. Biochim Biophys Acta 1736:181–188

    Article  CAS  Google Scholar 

  • Meers P, Mealy T (1993) Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry 32:11711–11721

    Article  CAS  Google Scholar 

  • Mourdjeva M, Kyurkchiev D, Mandinova A, Altankova I, Kehayov I, Kyurkchiev S (2005) Dynamics of membrane translocation of phosphatidylserine during apoptosis detected by a monoclonal antibody. Apoptosis 10:209–217

    Article  CAS  Google Scholar 

  • Nagarajan S, Zhang Y (2011) Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging. Nanotechnology 22:395101

    Article  Google Scholar 

  • Nath S, Spencer VA, Han J, Chang H, Zhang K, Fontenay GV, Anderson C, Hyman JM, Nilsen-Hamilton M, Chang YT, Parvin B (2012) Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy. PLoS One 7:e28802

    Article  CAS  Google Scholar 

  • Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A Jr, Josephson L, Weissleder R (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101:12294–12299

    Article  CAS  Google Scholar 

  • Oncul S, Demchenko AP (2006) The effects of thermal quenching on the excited-state intramolecular proton transfer reaction in 3-hydroxyflavones. Spectrochim Acta A Mol Biomol Spectrosc 65:179–183

    Article  Google Scholar 

  • Oncul S, Klymchenko AS, Kucherak OA, Demchenko AP, Martin S, Dontenwill M, Arntz Y, Didier P, Duportail G, Mely Y (2010) Liquid ordered phase in cell membranes evidenced by a hydration-sensitive probe: effects of cholesterol depletion and apoptosis. Biochim Biophys Acta 1798:1436–1443

    Article  CAS  Google Scholar 

  • Pereira WO, Amarante-Mendes GP (2011) Apoptosis: a programme of cell death or cell disposal? Scand J Immunol 73:401–407

    Article  CAS  Google Scholar 

  • Quinti L, Weissleder R, Tung CH (2006) A fluorescent nanosensor for apoptotic cells. Nano Lett 6:488–490

    Article  CAS  Google Scholar 

  • Ran S, Thorpe PE (2002) Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 54:1479–1484

    Article  CAS  Google Scholar 

  • Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

    CAS  Google Scholar 

  • Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207:1807–1817

    Article  CAS  Google Scholar 

  • Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  CAS  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  Google Scholar 

  • Rimon N, Schuldiner M (2011) Getting the whole picture: combining throughput with content in microscopy. J Cell Sci 124:3743–3751

    Article  CAS  Google Scholar 

  • Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    Article  CAS  Google Scholar 

  • Rucker-Martin C, Henaff M, Hatem SN, Delpy E, Mercadier JJ (1999) Early redistribution of plasma membrane phosphatidylserine during apoptosis of adult rat ventricular myocytes in vitro. Basic Res Cardiol 94:171–179

    Article  CAS  Google Scholar 

  • Schellenberger EA, Weissleder R, Josephson L (2004) Optimal modification of annexin V with fluorescent dyes. ChemBioChem 5:271–274

    Article  CAS  Google Scholar 

  • Schlegel RA, Stevens M, Lumley-Sapanski K, Williamson P (1993) Altered lipid packing identifies apoptotic thymocytes. Immunol Lett 36:283–288

    Article  CAS  Google Scholar 

  • Schutters K, Reutelingsperger C (2010) Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 15:1072–1082

    Article  CAS  Google Scholar 

  • Shynkar V, Mely Y, Duportail G, Piemont E, Klymchenko AS, Demchenko AP (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4′-dialkylamino-3-hydroxyflavones. J Phys Chem A 109:9522–9529

    Article  Google Scholar 

  • Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108:8151–8159

    Article  CAS  Google Scholar 

  • Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet JM, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129:2187–2193

    Article  CAS  Google Scholar 

  • Smith C, Mehta R, Gibson DF, Levashova Z, Blankenberg FG, Tait JF (2010) Characterization of a recombinant form of annexin VI for detection of apoptosis. Bioconjug Chem 21:1554–1558

    Article  CAS  Google Scholar 

  • Smith B, Xiao S, Wolter W, Wheeler J, Suckow M, Smith B (2011a) In vivo targeting of cell death using a synthetic fluorescent molecular probe. Apoptosis 16:722–731

    Article  Google Scholar 

  • Smith BA, Gammon ST, Xiao S, Wang W, Chapman S, McDermott R, Suckow MA, Johnson JR, Piwnica-Worms D, Gokel GW, Smith BD, Leevy WM (2011b) In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc—dipicolylamine probe. Mol Pharm 8:583–590

    Article  CAS  Google Scholar 

  • Steensma DP, Timm M, Witzig TE (2003) Flow cytometric methods for detection and quantification of apoptosis. Methods Mol Med 85:323–332

    CAS  Google Scholar 

  • Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995) Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol 2:968–974

    Article  CAS  Google Scholar 

  • Tait JF (2008) Imaging of apoptosis. J Nucl Med 49:1573–1576

    Article  Google Scholar 

  • Telford WG (2012) A violet ratiometric membrane probe for the detection of apoptosis. Curr Protoc Cytom UNIT 9.38: 9.38.31–39.38.12

  • Telford WG, Komoriya A, Packard BZ, Bagwell CB (2011) Multiparametric analysis of apoptosis by flow cytometry. Methods Mol Biol 699:203–227

    Article  CAS  Google Scholar 

  • Thapa N, Kim S, So IS, Lee BH, Kwon IC, Choi K, Kim IS (2008) Discovery of a phosphatidylserine-recognizing peptide and its utility in molecular imaging of tumour apoptosis. J Cell Mol Med 12:1649–1660

    Article  CAS  Google Scholar 

  • Tomin VI, Oncul S, Smolarczyk G, Demchenko AP (2007) Dynamic quenching as a simple test for the mechanism of excited-state reaction. Chem Phys 342:126–134

    Article  CAS  Google Scholar 

  • Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29:468–480

    Article  CAS  Google Scholar 

  • van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  Google Scholar 

  • van Meer G (2005) Cellular lipidomics. EMBO J 24:3159–3165

    Article  Google Scholar 

  • van Tilborg GAF, Mulder WJM, Chin PTK, Storm G, Reutelingsperger CP, Nicolay K, Strijkers GJ (2006) Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconj Chem 17:865–868

    Article  Google Scholar 

  • Waczulikova I, Rozalski M, Rievaj J, Nagyova K, Bryszewska M, Watala C (2002) Phosphatidylserine content is a more important contributor than transmembrane potential to interactions of merocyanine 540 with lipid bilayers. Biochim Biophys Acta 1567:176–182

    Article  CAS  Google Scholar 

  • Xiong C, Brewer K, Song S, Zhang R, Lu W, Wen X, Li C (2011) Peptide-based imaging agents targeting phosphatidylserine for the detection of apoptosis. J Med Chem 54:1825–1835

    Article  CAS  Google Scholar 

  • Yamaji-Hasegawa A, Tsujimoto M (2006) Asymmetric distribution of phospholipids in biomembranes. Biol Pharm Bull 29:1547–1553

    Article  CAS  Google Scholar 

  • Yarmush ML, King KR (2009) Living-cell microarrays. Annu Rev Biomed Eng 11:235–257

    Article  CAS  Google Scholar 

  • Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23:110–119

    Article  CAS  Google Scholar 

  • Zheng H, Wang F, Wang Q, Gao J (2011) Cofactor-free detection of phosphatidylserine with cyclic peptides mimicking lactadherin. J Am Chem Soc 133:15280–15283

    Article  CAS  Google Scholar 

  • Zhu C, Yang Q, Liu L, Wang S (2011) A potent fluorescent probe for the detection of cell apoptosis. Chem Commun (Camb) 47:5524–5526

    Article  CAS  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demchenko, A.P. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 65, 157–172 (2013). https://doi.org/10.1007/s10616-012-9481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9481-y

Keywords

Navigation