Skip to main content
Log in

Pricing Fade-in Options Under GARCH-Jump Processes

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, we investigate fade-in options under GARCH-jump processes. Specifically, we adopt NIG distributions to capture jump risk, and both market and individual jumps are considered. In the pricing model driven by GARCH-jump processes, we obtain the prices of fade-in options using the Fourier transform methods. Finally, we use the derived pricing formulae to illustrate the effects of fade-in sets and the parameters in the jump processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Wang (2023) is an exception, where fade-in options are investigated in the Hawkes jump diffusion process. Different from Wang (2023), we work under discrete-time GARCH-jump models.

  2. Use \(A_0(t),\ A_1(t),\ A_2(t),\ A_3(t)\ A_4(t)\) for simplicity.

  3. Use \(B_0(t),\ B_1(t),\ B_2(t),\ B_3(t),\ B_4(t)\) for simplicity.

  4. Additionally, banks headquartered in the United States are obligated to report options, including exotics, to the Depository Trust and Clearing Corporation (DTCC). Analysts can leverage DTCC data for estimation purposes.

  5. Griebsch and Wystup (2011) demonstrated that the precision of FFT estimations improves with a higher number of grid points, P, albeit at the expense of increased computational time. Nonetheless, due to the constraints of our equipment, we chose the largest practicable P to ensure optimal representation of the pricing formula.

References

  • Bégin, J., Dorion, C., & Gauthier, G. (2020). Idiosyncratic jump risk matters: Evidence from equity returns and options. Review of Financial Studies, 33, 155–211.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637–654.

    Article  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 301–327.

    Article  Google Scholar 

  • Brockhaus O., Ferraris A., Gallus C., Long D., Martin, R., Overhaus, M. (1999). Modelling and hedging equity derivatives. Risk Books.

  • Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2, 61–73.

    Article  Google Scholar 

  • Christoffersen, P., Jacobs, K., & Ornthanalai, C. (2012). Dynamic jump intensities and risk premiums: Evidence from S &P500 returns and options. Journal of Financial Economics, 106, 447–472.

    Article  Google Scholar 

  • Christoffersen, P., Jacobs, K., Ornthanalai, C., & Wang, Y. (2008). Option valuation with long-run and short-run volatility components. Journal of Financial Economics, 90, 272–297.

    Article  Google Scholar 

  • Duan, J. (1995). The GARCH option pricing model. Mathematical Finance, 5, 13–32.

    Article  Google Scholar 

  • Duan, J. (1997). Augmented GARCH(\(p\), \(q\)) process and its diffusion limit. Journal of Econometrics, 79, 97–127.

    Article  Google Scholar 

  • Duan, J., Gauthier, G., & Simonato, J. (1999). An analytical approximation for the GARCH option pricing model. Journal of Computational Finance, 2, 75–116.

    Article  Google Scholar 

  • Duan, J., Ritchken, P., & Sun, Z. (2006). Approximating GARCH-jump models, jump-diffusion processes, and option pricing. Mathematical Finance, 16, 21–52.

    Article  Google Scholar 

  • Francq, C., & Zakoian, J. (2019). GARCH models: Structure, statistical inference and financial applications (second ed.). John Wiley and Sons.

  • Griebsch, S., & Wystup, U. (2011). On the valuation of fader and discrete barrier options in Heston’s stochastic volatility model. Quantitative Finance, 11, 693–709.

    Article  Google Scholar 

  • Guo, Z., & Bai, Y. (2022). A lattice approach for option pricing under a regime-switching GARCH-jump model. Probability in the Engineering and Informational Sciences, 36, 1138–1170.

    Article  Google Scholar 

  • Hakala, J., & Wystup, U. (2002). Foreign exchange Risk: models, instruments and strategies. London: Risk Publications.

    Google Scholar 

  • Heston, S., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies, 13, 585–625.

    Article  Google Scholar 

  • Lin, B., Hung, M., Wang, J., & Wu, P. (2013). A lattice model for option pricing under GARCH-jump processes. Review of Derivatives Research, 16, 295–329.

    Article  Google Scholar 

  • Ornthanalai, C. (2014). Lévy jump risk: Evidence from options and returns. Journal of Financial Economics, 112, 69–90.

    Article  Google Scholar 

  • Ritchken, P., & Trevor, R. (1999). Pricing options under generalized GARCH and stochastic volatility processes. The Journal of Finance, 54, 377–402.

    Article  Google Scholar 

  • Wang, X. (2017). Analytical valuation of vulnerable options in a discrete-time framework. Probability in the Engineering and Informational Sciences, 31, 100–120.

    Article  Google Scholar 

  • Wang, X. (2020). Valuation of Asian options with default risk under GARCH models. International Review of Economics and Finance, 70, 27–40.

    Article  Google Scholar 

  • Wang, X. (2022). Valuing fade-in European options with default risk in Heston-Nandi GARCH models. Review of Derivatives Research, 25, 1–22.

    Article  Google Scholar 

  • Wang, X. (2023). Pricing path-dependent options under the Hawkes jump diffusion process. Journal of Industrial and Management Optimization, 19, 1911–1930.

    Article  Google Scholar 

  • Wang, X., & Zhang, H. (2022). Pricing basket spread options with default risk under Heston-Nandi GARCH models. The North American Journal of Economics and Finance, 59, 101596.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the editor for providing a number of valuable comments that led to several important improvements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest to this work, we do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Reform of Underlying Assets and Market Dynamics:

$$\begin{aligned} \left\{ \begin{array}{ll} \ln S(t+1) = \ln S(t)+r-\frac{1}{2}\beta ^2_{s,z}h_{m,z}(t+1)-\Pi _m(\beta _{s,y})h_{m,y}(t+1)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\frac{1}{2}h_{s,z}(t+1)-\Pi _s(1)h_{s,y}(t+1)+\beta _{s,z}\sqrt{h_{m,z}(t+1)}Z_m(t+1)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\beta _{s,y}y_m(t+1)+\sqrt{h_{s,z}(t+1)}Z_s(t+1)+y_s(t+1),\\ \ln M(t+1) = \ln M(t)+r-\frac{1}{2}h_{m,z}(t+1)-\Pi _m(1)h_{m,y}(t+1)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\sqrt{h_{m,z}(t+1)}Z_m(t+1)+y_m(t+1),\\ h_{m,z}(t+1)=\pi _{m,z,1}+\pi _{m,z,2}h_{m,z}(t)+\pi _{m,z,6}\Big (Z_m(t)\Big )^2+\pi _{m,z,7}\sqrt{h_{m,z}(t)}Z_m(t),\\ h_{s,z}(t+1)=\pi _{s,z,1}+\pi _{s,z,2}h_{s,z}(t)+\pi _{s,z,4}h_{s,z}(t)+\pi _{s,z,6}\Big (Z_m(t)\Big )^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\pi _{s,z,7}\sqrt{h_{m,z}(t)}Z_m(t) +\pi _{s,z,8}\Big (Z_s(t)\Big )^2+\pi _{s,z,9}\sqrt{h_{s,z}(t)}Z_s(t),\\ h_{m,z}(t+1)=\pi _{m,y,1}+\pi _{m,y,2}h_{m,z}(t)+\pi _{m,y,3}h_{m,y}(t)+\pi _{m,y,6}\Big (Z_m(t)\Big )^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\pi _{m,y,7}\sqrt{h_{m,z}(t)}Z_m(t),\\ h_{s,y}(t+1)=\pi _{s,y,1}+\pi _{s,y,2}h_{m,z}(t)+\pi _{s,y,3}h_{m,y}(t)+\pi _{s,y,4}h_{s,z}(t)+\pi _{s,y,5}h_{s,y}(t)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\pi _{s,y,6}\Big (Z_m(t)\Big )^2+\pi _{s,y,7}\sqrt{h_{m,z}(t)}Z_m(t)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\pi _{s,y,8}\Big (Z_s(t)\Big )^2+\pi _{s,y,9}\sqrt{h_{s,z}(t)}Z_s(t), \end{array}\right. \end{aligned}$$
(5.1)

where \(\pi _{u,v,w}\ u\in \{m,s\},v\in \{z,y\},w\in \{1,2,\ldots ,9\}\) are the reformed parameters. They have the same forms as those in Bégin et al. (2020). Table 3 lists the results.

Table 4 Parameters relationships

\(\square\)

Proof of Proposition 2.1: First, we discuss the moment generating function \(f(t;t_i,\phi _1,\phi _2)\) when \(t_i\le t\le T\),

$$\begin{aligned} f(t;t_i,\phi _1,\phi _2)= & {} \exp \Big \{\phi _1\ln S(t)+\phi _2\ln S(t_i)+A_0(t;t_i,\phi _1,\phi _2)\\{} & {} \ \ \ \ \ \ \ \ +A_1(t;t_i,\phi _1,\phi _2)h_{m,z} (t+1)+A_2(t;t_i,\phi _1,\phi _2)h_{m,y} (t+1)\\{} & {} \ \ \ \ \ \ \ \ +A_3(t;t_i,\phi _1,\phi _2)h_{s,z} (t+1)+A_4(t;t_i,\phi _1,\phi _2)h_{s,y} (t+1)\Big \}. \end{aligned}$$

In the following deduction, we use f(t), \(A_0(t)\), \(A_1(t)\), \(A_2(t)\), \(A_3(t)\), \(A_4(t)\) for simplicity. From the definition of \(f(t;t_i,\phi _1,\phi _2)\), we can get that

$$\begin{aligned} f(T;t_i,\phi _1,\phi _2)=e^{\phi _1\ln S(T)+\phi _2\ln S(t_i)}, \end{aligned}$$

which means that

$$\begin{aligned} A_0(T)=A_1(T)=A_2(T)=A_3(T)=A_4(T)=0. \end{aligned}$$

According to the law of iterated expectations, dynamics of the underlying asset, and the intensity process, one gets the following result,

$$\begin{aligned} f(t)= & {} E_t\Big [f(t+1)\Big ]\\= & {} E_t\Big [\exp \Big \{\phi _1\ln S(t+1)+\phi _2\ln S(t_i)+A_0(t+1)+A_1(t+1)h_{m,z} (t+2)\\{} & {} \ \ \ \ \ \ \ \ \ \ \ \ \ +A_2(t+1)h_{m,y} (t+2)+A_3(t+1)h_{s,z}(t+2)+A_4(t+1)h_{s,y}(t+2)\Big \}\Big ]. \end{aligned}$$

There are so many terms and parameters in the expression, but they have similar forms. Thus, we use substitute terms according to Bégin et al. (2020) for a clearer result. For \(w \in \{1,2,\ldots ,9\}\), define

$$\begin{aligned} D_w(t;t_i,\phi _1,\phi _2)= & {} A_1(t;t_i,\phi _1,\phi _2)\pi _{m,z,w}+ A_2(t;t_i,\phi _1,\phi _2)\pi _{m,y,w}\\{} & {} +A_3(t;t_i,\phi _1,\phi _2)\pi _{s,z,w}+A_4(t;t_i,\phi _1,\phi _2)\pi _{s,y,w}. \end{aligned}$$

Then, the moment generating function takes the following form,

$$\begin{aligned} f(t)= & {} \exp \Big \{\phi _1\ln S(t)+\phi _2\ln S(t_i)+\phi _1 r+A_0(t+1)+D_1(t+1)\\{} & {} +\big (D_2(t+1)-\frac{\phi _1}{2}\beta _{s,z}^2\big )h_{m,z}(t+1)\\{} & {} +\big (D_3(t+1)-\phi _1\pi _m(\beta _{s,y})\big )h_{m,y}(t+1)+\big (D_4(t+1)-\frac{1}{2}\big )h_{s,z}(t+1)\\{} & {} +\big (D_5(t+1)-\phi _1\pi _s(1)\big )h_{s,y}(t+1)\Big \}\\{} & {} \times E_t\Big [\exp \Big \{ D_6(t+1)\big (Z_m(t+1)\big )^2+\big (D_7(t+1)+\phi _1\beta _{s,z}\big )\sqrt{h_{m,z}(t+1)}Z_m(t+1) \\{} & {} +\phi _1\beta _{s,y}y_m(t+1) \quad D_8(t+1)\big (Z_s(t+1)\big )^2+\big (D_9(t+1)+\phi _1\big )\sqrt{h_{s,z}(t+1)}Z_s(t+1)\\{} & {} +\phi _1y_s(t+1) \Big \}\Big ]. \end{aligned}$$

Moreover, the following conclusions are proposed for further derivation,

$$\begin{aligned} E_t\Big [e^{a(Z(t+1))^2+bZ(t+1)}\Big ]= & {} \exp \Big \{-\frac{1}{2}\ln (1-2a)+\frac{b^2}{2(1-2a)}\Big \},\\ E_t\Big [e^{ay(t+1)}\Big ]= & {} \exp \Big \{\Pi (a)h_y(t+1)\Big \}. \end{aligned}$$

where \(Z(t+1)\) is a standard normal sequence, \(y(t+1)\) is the NIG process with intensity \(h_y (t+1)\) (Table 4).

Calculating conditional expectation terms in the polynomial above gives the following results,

$$\begin{aligned}{} & {} E_t\Big [\exp \Big \{ D_6(t+1)\big (Z_m(t+1)\big )^2+\big (D_7(t+1)+\phi _1\beta _{s,z}\big )\sqrt{h_{m,z}(t+1)}Z_m(t+1)\\{} & {} \quad \quad +\phi _1\beta _{s,y}y_m(t+1) D_8(t+1)\big (Z_s(t+1)\big )^2 \\{} & {} \quad \quad +\big (D_9(t+1)+\phi _1\big )\sqrt{h_{s,z}(t+1)}Z_s(t+1)+\phi _1y_s(t+1) \Big \}\Big ] \\{} & {} \quad = \exp \left\{ -\frac{1}{2}\big (1-2D_6(t+1)\big )+\frac{1}{2}\frac{\big (D_7(t+1)+\phi _1\beta _{s,z}\big )^2}{1-2D_6(t+1)}h_{m,z}(t+1) \right. \\{} & {} \quad \quad +\Pi _m(\phi _1\beta _{s,y})h_{m,y}(t+1) -\frac{1}{2}\big (1-2D_8(t+1)\big )\\{} & {} \quad \quad \left. +\frac{1}{2}\frac{\big (D_9(t+1)+\phi _1\big )^2}{1-2D_8(t+1)}h_{m,z}(t+1)+\Pi _s(\phi _1)h_{s,y}(t+1)\right\} . \end{aligned}$$

Above all, we can derive the explicit forms of \(A_0(t),A_1(t),A_2(t),A_3(t),A_4(t)\) when \(t_i\le t\le T\), i.e.,

$$\begin{aligned} A_0(t)= & {} \phi _1 r+A_0(t+1)+D_1(t+1)-\frac{1}{2}\ln (1-2D_6(t+1))\\{} & {} -\frac{1}{2}\ln (1-2D_8(t+1)),\\ A_1(t)= & {} D_2(t+1)-\frac{1}{2}\phi _1\beta _{s,z}^2+\frac{1}{2}\frac{\big (D_7(t+1)+\phi _1\beta _{s,z}\big )^2}{1-2D_6(t+1)},\\ A_2(t)= & {} D_3(t+1)-\phi _1\Pi _m(\beta _{s,y})+\Pi _m(\phi _1\beta _{s,y}),\\ A_3(t)= & {} D_4(t+1)-\frac{1}{2}\phi _1+\frac{1}{2}\frac{\big (D_9(t+1)+\phi _1\big )^2}{1-2D_8(t+1)},\\ A_4(t)= & {} D_5(t+1)-\phi _1\Pi _s(1)+\Pi _s(\phi _1). \end{aligned}$$

Next, we discuss the moment generating function \(f(t;t_i,\phi _1,\phi _2)\) when \(0\le t \le t_i\),

$$\begin{aligned} f(t;t_i,\phi _1,\phi _2)= & {} \exp \Big \{(\phi _1+\phi _2)\ln S(t)+B_0(t;t_i,\phi _1,\phi _2)\\{} & {} \ \ \ \ \ \ \ \ +B_1(t;t_i,\phi _1,\phi _2)h_{m,z} (t+1)+B_2(t;t_i,\phi _1,\phi _2)h_{m,y} (t+1)\\{} & {} \ \ \ \ \ \ \ \ +B_3(t;t_i,\phi _1,\phi _2)h_{s,z} (t+1)+B_4(t;t_i,\phi _1,\phi _2)h_{s,y} (t+1)\Big \}. \end{aligned}$$

Similarly, we use \(B_0(t)\), \(B_1(t)\), \(B_2(t)\), \(B_3(t)\), \(B_4(t)\) for simplicity, and we can obtain the expression of \(f(t_i;t_i,\phi _1,\phi _2)\), i.e.,

$$\begin{aligned} f(t_i;t_i,\phi _1,\phi _2)= & {} \exp \Big \{(\phi _1+\phi _2)\ln S(t_i)+A_0(t_i) +A_1(t_i)h_{m,z}(t_i+1)\\{} & {} \ \ \ \ \ \ \ +A_2(t_i)h_{m,y}(t_i+1)+A_3(t_i)h_{s,z}(t_i+1)+A_4(t_i)h_{s,y}(t+1)\Big \}, \end{aligned}$$

which means that

$$\begin{aligned} B_0(t_i)=A_0(t_i),\ \ B_1(t_i)=A_1(t_i),\ \ B_2(t_i)=A_2(t_i),\ \ B_3(t_i)=A_3(t_i),\ \ B_4(t_i)=A_4(t_i). \end{aligned}$$

We can see that the only difference in the forms of the moment generating functions between \(0\le t \le t_i\) and \(t_i\le t\le T\) is the term \((\phi _1+\phi _2)\ln S(t)\) and \(\phi _1\ln S(t)+\phi _2\ln S(t_i)\). Thus, we can directly obtain the following results for \(0\le t \le t_i\),

$$\begin{aligned} B_0(t)= & {} (\phi _1+\phi _2) r+B_0(t+1)+D_1(t+1)-\frac{1}{2}\ln (1-2D_6(t+1))\\{} & {} -\frac{1}{2}\ln (1-2D_8(t+1)),\\ B_1(t)= & {} D_2(t+1)-\frac{1}{2}(\phi _1+\phi _2)\beta _{s,z}^2+\frac{1}{2}\frac{\big (D_7(t+1)+(\phi _1+\phi _2)\beta _{s,z}\big )^2}{1-2D_6(t+1)},\\ B_2(t)= & {} D_3(t+1)-(\phi _1+\phi _2)\Pi _m(\beta _{s,y})+\Pi _m\big ((\phi _1+\phi _2)\beta _{s,y}\big ),\\ B_3(t)= & {} D_4(t+1)-\frac{1}{2}(\phi _1+\phi _2)+\frac{1}{2}\frac{\big (D_9(t+1)+(\phi _1+\phi _2)\big )^2}{1-2D_8(t+1)},\\ B_4(t)= & {} D_5(t+1)-(\phi _1+\phi _2)\Pi _s(1)+\Pi _s\big (\phi _1+\phi _2\big ). \end{aligned}$$

\(\square\)

Proof of Proposition 2.2: For any \(\alpha ,\ \beta >0\) and \(x\in \{k,l\}\), define the two-dimensional Fourier transform with respect to k and x of \(C_j(k,x)\) as follows,

$$\begin{aligned} \hat{C_j}(\upsilon ,\nu ):= & {} \int _{-\infty }^{\infty }\int _{-\infty }^{\infty }e^{\alpha k +\beta x}C_j(k,x)e^{2\pi i(\upsilon k+\nu x)}\,\textrm{d}k\textrm{d}x. \end{aligned}$$

Simple calculations imply that

$$\begin{aligned} \hat{C_j}(\upsilon ,\nu )= & {} E\left[ \int _{-\infty }^{\infty }e^{(2\pi i\nu +\beta )x}I\big (S(t_j)\ge e^{x}\big )\left( \int _{-\infty }^{\ln S(T)}e^{(2\pi i\upsilon +\alpha )k}\left( S(T)-e^{k}\right) \,\textrm{d}k\right) \,\textrm{d}x\right] ,\\= & {} E\left[ \frac{e^{(\alpha +2\pi i\upsilon +1)\ln S(T)}}{(\alpha +2\pi i\upsilon )(\alpha +2\pi i\upsilon +1)}\int _{-\infty }^{\ln S(t_j)}e^{(2\pi i\nu +\beta )x}\,\textrm{d}x\right] ,\\= & {} \frac{1}{(\alpha +2\pi i\upsilon )(\beta +2\pi i\nu )(\alpha +2\pi i\upsilon +1)}E\Big [e^{(\alpha +2\pi i\upsilon +1)\ln S(T)+(\beta +2\pi i\nu )\ln S(t_j)}\Big ],\\= & {} \frac{1}{(\alpha +2\pi i\upsilon )(\beta +2\pi i\nu )(\alpha +2\pi i\upsilon +1)}f(0;t_j,\alpha +2\pi i\upsilon +1,\beta +2\pi i\nu ). \end{aligned}$$

\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, H. Pricing Fade-in Options Under GARCH-Jump Processes. Comput Econ (2023). https://doi.org/10.1007/s10614-023-10527-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-023-10527-8

Keywords

JEL classification

Navigation