Skip to main content
Log in

An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, we consider the fast numerical valuation of European and American options under Merton’s jump-diffusion model, which is given by a partial integro-differential equations. Due to the singularities and discontinuities of the model, the time-space grids are nonuniform with refinement near the strike price and expiry. On such nonuniform grids, the spatial differential operators are discretized by finite difference methods, and time stepping is performed using the discontinuous Galerkin finite element method. Owing to the nonuniform grids, algebraic multigrid method is used for solving the dense algebraical system resulting from the discretization of the integral term associated with jumps in models, which is more challenging. Numerical comparison of algebraic multigrid, the generalized minimal residual method, and the incomplete LU preconditioner shows that algebraic multigrid method is superior to and more effective than the other two methods in solving such dense algebraical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achdou, Y., & Pironneau, O. (2005). Computational methods for option pricing (Vol. 30)., Frontiers in Applied Mathematics Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Almendral, A., & Oosterlee, C. W. (2005). Numerical valuation of options with jumps in the underlying. Applied Numerical Mathematics, 53, 1–18.

    Article  Google Scholar 

  • Andersen, L., & Andreasen, J. (2000). Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research, 4(3), 231–262.

    Article  Google Scholar 

  • Bank, R., & Falgout, R. (2015). Algebraic multigrid domain and range decomposition (AMG-DD/AMG-RD). SIAM Journal on Scientific Computing, 5(37), S113–S136.

    Article  Google Scholar 

  • Barles, G., & Soner, H. M. (1998). Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance and Stochastics, 2(4), 369–397.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81, 637–654.

    Article  Google Scholar 

  • Bramble, J., Pasciak, J., & Xu, J. (1991). The analysis of multigrid algorithm with nonnestedspaces or noninherited quadratic forms. Mathematics of Computation, 56, 1–34.

    Article  Google Scholar 

  • Briani, M., Chioma, C. L., & Natalini, R. (2004). Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numerische Mathematik, 98, 607–646.

    Article  Google Scholar 

  • Briani, M., Natalini, R., & Russo, G. (2007). Implicit–explict numerical schemes for jump-diffusion processes. Calcolo, 44, 33–57.

    Article  Google Scholar 

  • Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A multigrid tutorial. Philadelphia, PA: SIAM.

    Book  Google Scholar 

  • Chan, R. T. L. (2016). Adaptive radial basis function methods for pricing options under jump-diffusion models. Computational Economics, 47, 623–843.

    Article  Google Scholar 

  • Chow, E., & Patel, A. (2015). Fine-grained parallel incomplete LU factorization. SIAM Journal on Scientific Computing, 37(2), C169–C193.

    Article  Google Scholar 

  • Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Cont, R., & Voltchkova, E. (2005). A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43, 1596–1624.

    Article  Google Scholar 

  • d’ Halluin, Y., Forsyth, P. A., & Labahn, G. (2004). A penalty method for American options with jump diffusion processes. Numerische Mathematik, 97(2), 321–352.

    Article  Google Scholar 

  • d’ Halluin, Y. P., Forsyth, A., & Vetzal, K. R. (2005). Robust numerical methods for contingent claims under jump diffusion processes. IMA Journal of Numerical Analysis, 25(1), 87–112.

    Article  Google Scholar 

  • Frey, R., & Patie, P. (2002). Risk management for derivatives in illiquid markets: A simulation study. In K. Sandmann & P. Schönbucher (Eds.), Advances in finance and stochastics (pp. 137–159). Berlin: Springer.

    Chapter  Google Scholar 

  • Guo, J. Q., & Wang, W. S. (2014). An unconditonally stable, positivity-preserving splitting scheme for nonlinear Black–Scholes equation with transaction costs. Scientific World Journal, 1–11. ID 525207.

  • Guo, J. Q., & Wang, W. S. (2015). On the numerical solution of nonlinear option pricing equation in illiquid markets. Computers & Mathematics with Applications, 69, 117–133.

    Article  Google Scholar 

  • in’t Hout, K. J., & Volders, K. (2009). Stability of central finite difference schemes on non-uniform grids for the Black-Scholes equation. Applied Numerical Mathematics, 59, 2593–2609.

    Article  Google Scholar 

  • Kou, S. G. (2002). A jump diffusion model for option pricing. Management Science, 48, 1086–1101.

    Article  Google Scholar 

  • Leland, H. E. (1985). Option pricing and replication with transaction costs. Journal of Finance, 40, 1283–1301.

    Article  Google Scholar 

  • Lesaint, P., & Raviart, P. A. (1974). On a finite element method for solving the neutron transport equation. In C. de Boor (Ed.), Mathematical aspets of finite elements in partial differential equations (pp. 89–123). New York, NY: Academic Prss.

    Chapter  Google Scholar 

  • Liu, J., & Sun, H. W. (2014). A fast high-order sinc-based algorithm for pricing options under jump-diffusion processes. International Journal of Computer Mathematics, 91(10), 2163–2184.

    Article  Google Scholar 

  • Lyons, T. J. (1995). Uncertain volatility and the risk-free synthesis of derivatives uncertain volatility and the risk-free synthesis of derivatives. Applied Mathematical Finance, 2(2), 117–133.

    Article  Google Scholar 

  • Matache, A. M., Schwab, C., & Wihler, T. P. (2004). Fast numerial solution Of parabolic integro-differential equations with applications in finance. IMA preprint series 1954, University of Minnesota.

  • Matache, A. M., von Petersdorff, T., & Schwab, C. (2004). Fast deterministic pricing of options on Lévy driven assets. ESAIM. Mathematical Modelling and Numerical Analysis, 38(1), 37–71.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. Rand Jouranl of Economics, 4, 141–183.

    Google Scholar 

  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–144.

    Article  Google Scholar 

  • Myneni, R. (1992). The pricing of the American option. Annals of Applied Probability, 2(1), 1–23.

    Article  Google Scholar 

  • Saad, Y. (1996). Iterative methods for sparse linear systems (1st ed.). Boston, MA: PWS.

    Google Scholar 

  • Salmi, S., & Toivanen, J. (2011). An iterative method for pricing American options under jump-diffusion models. Applied Numerical Mathematics, 61, 821–831.

    Article  Google Scholar 

  • Sarra, S. A. (2012). A linear system-free Gaussian RBF method for the Gross-Pitaevskii equation on unbounded domains. Numerical Methods for Partial Differential Equations, 28(2), 389–401.

    Article  Google Scholar 

  • Schotzau, D., & Schwab, C. (2000). Time discretization of parabolic problems by the hp-vertion of discontinuous Galerkin finite element method. SIAM Journal on Numerical Analysis, 38(3), 837–875.

    Article  Google Scholar 

  • Smith, B., Bjorstad, P., & Gropp, W. (1996). Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Spike, L., & Sun, H. W. (2009). Fourth order compact boundary value method for option pricing with jumps. Advances in Applied Mathematics and Mechanics, 1(6), 845–861.

    Article  Google Scholar 

  • Tavella, D., & Randall, C. (2000). Pricing financial instruments: The finite difference method. Chichester: Wiley.

    Google Scholar 

  • Toivanen, J. (2008). Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM Journal on Scientific Computing, 4, 1949–1970.

    Article  Google Scholar 

  • Wang, W., & Chen, Y. (2017). Fast numerical valuation of options with jump under Merton’s model. Journal of Computational and Applied Mathematics, 318, 79–92.

    Article  Google Scholar 

  • Werder, T., Gerdes, K., Schötzau, D., & Schwab, C. (2001). \(hp\)-discontinuous Galerkin time stepping for parabolic problems. Computer Methods in Applied Mechanics and Engineering, 190, 6685–6708.

    Article  Google Scholar 

  • Zecchin, A. C., & Thum, P. (2012). Steady-state behavior of large water distribution systems: Algebraic multigrid method for the fast solution of the linear step. Journal of Water Resources Planning and Management, 138(6), 639–650.

    Article  Google Scholar 

  • Zhang, X. L. (1997). Numerical analysis of American option pricing in a jump-diffusion model. Mathematics of Operations Research, 22(3), 668–690.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editor-in-Chief, Professor Hans Amman, and the four referees for comments and suggestions that led to improvements in the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng Wang.

Additional information

This work was supported by the Natural Science Foundation of China (Grant Nos. 11771060, 11671343, 11371074).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, W. & Xiao, A. An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids. Comput Econ 53, 1565–1591 (2019). https://doi.org/10.1007/s10614-018-9823-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-018-9823-8

Keywords

Navigation