Skip to main content
Log in

Data transfer planning with tree placement for collaborative environments

Constraints Aims and scope Submit manuscript

Abstract

Latency-sensitive data distribution and media streaming is a part of many network-centric applications. Based on our previous practical experiences with interactive high-quality media distribution and orchestration of network-centric collaborative environments, we have developed an automated planner for media stream distribution in environments where bandwidth of streams is comparable to capacities of network links. We have successfully adopted methods of constraint programming to deal with this problem. We provide a new comprehensive description of the constraint model which builds upon basic algebraic description we have published earlier. To formulate the model, a tree placement problem is proposed and a new corresponding variant of the link-based model for traffic placement problem is applied. We prove correctness of the proposed constraint satisfaction problem to present validity of included constraints with respect to the desired functionality of planning. An evaluation of the implemented solver is presented on a number of experimental problems to show effectiveness of the formulation. Importantly, the solver is a part of an application middleware called CoUniverse, which is pioneering orchestration of component-based interactive collaborative environments in a number of global demonstrations and projects. Both flexibility of the described model as well as generality of other parts of the CoUniverse framework allowed it to be one of very few early adopters of bandwidth-on-demand services for advanced high-bandwidth applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ahuja, R. K., Magnati, T. L., & Orlin, J. B. (1993). Network flows. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  2. Ali, A. A., & Lepage, F. (2007). IGMPS, a new tool for estimating end-to-end available bandwidth in IP network paths. In International conference on networking and services (pp. 115–120). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  3. Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2007). The traveling salesman problem: A computational study. Princeton: Princeton University Press.

    Google Scholar 

  4. Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: Applying constraint programming to scheduling problems. Norwell: Kluwer.

    MATH  Google Scholar 

  5. Biondi, P., & Desclaux, F. (2006). Silver needle in the Skype, 2006. Presentation at Black Hat Europe 2006.

  6. Bramley, R., Chiu, K., Diwan, S., Gannon, D., Govindaraju, M., Mukhi, N., et al. (2000). A component based services architecture for building distributed applications. In Ninth IEEE international symposium on high performance distributed computing (HPDC-9 2000) (p. 51). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  7. Brucker, P. (1998). Scheduling algorithms. Berlin: Springer.

    MATH  Google Scholar 

  8. Childers, L., Disz, T., Olson, R., Papka, M. E., Stevens, R., & Udeshi, T. (2000). Access Grid: Immersive group-to-group collaborative visualization. In Proceedings of immersive projection technology. Iowa: Iowa State University.

    Google Scholar 

  9. Cronholm, W., & Ajili, F. (2004). Strong cost-based filtering for Lagrange decomposition applied to network design. In Principles and practice of constraint programming—CP 2004. Lecture notes in computer science (Vol. 3258, pp. 726–730). Berlin: Springer.

    Chapter  Google Scholar 

  10. De Miguel, T., Pavón, S., Salvachúa, J., Quemada, J., Alonso, P. L. C., Fernandez-Amigo, J., et al. (1994). ISABEL—Experimental distributed cooperative work application over broadband networks. In Multimedia: Advanced teleservices and high-speed communication architectures. Lecture notes in computer science (Vol. 868, pp. 353–362).

  11. Dechter, R. (2003). Constraint processing. San Mateo: Morgan Kaufmann.

    Google Scholar 

  12. Diot, C., Neil, B., Lyles, B., Kassem, H., Levine, B. N., & Balensiefen, D. (2000). Deployment issues for the IP multicast service and architecture. IEEE Network, 14(1), 78–88.

    Article  Google Scholar 

  13. Dovrolis, C., Ramanathan, P., & Moore, D. (2004). Packet-dispersion techniques and a capacity-estimation methodology. IEEE/ACM Transactions on Networking, 12(6), 963–977.

    Article  Google Scholar 

  14. Dressler, F. (2003). Availability analysis in large scale multicast networks. In 15th IASTED international conference on parallel and distributed computing and systems (PDCS2003) (Vol. I, pp. 399–403).

  15. Egger, S., & Braun, T. (2003). Performance evaluation of multicast for small conferences. In Group communications and charges; technology and business models. Lecture notes in computer science (Vol. 2816, pp. 226–233).

  16. El-Sayed, A., Roca, V., & Mathy, L. (2003). A survey of proposals for an alternative group communication service. IEEE Network, 17(1), 46–51.

    Article  Google Scholar 

  17. Frei, C., & Faltings, B. (1999). Resource allocation in networks using abstraction and constraint satisfaction techniques. In J. Jaffar (Ed.), Principles and practice of constraint programming—CP’99. Lecture notes in computer science (Vol. 1713, pp. 205–233). Berlin: Springer.

    Google Scholar 

  18. Galvez, P. (2007). EVO: Enabling virtual organizations. In Computing in high energy and nuclear physics (CHEP’07).

  19. Gharai, L., Lehman, T., Saurin, A., & Perkins, C. (2006). Experiences with high definition interactive video conferencing. In IEEE international conference on multimedia & expo (pp. 433–436). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  20. Goetz, B. (2004). Java theory and practice: Dynamic compilation and performance measurement. http://www.ibm.com/developerworks/library/j-jtp12214/.

  21. Gross, J. L., & Yellen, J. (2005). Graph theory and its applications. Chapman & Hall/CRC.

  22. Hefeeda, M., Habib, A., Botev, B., Xu, D., & Bhargava, B. (2003). Promise: Peer-to-peer media streaming using collectcast. In MULTIMEDIA ’03: Proceedings of the eleventh ACM international conference on multimedia (pp. 45–54). New York: ACM.

    Chapter  Google Scholar 

  23. Heineman, G. T., & Councill, W. T. (2001). Component-based software engineering: Putting the pieces together (ACM Press). Reading: Addison-Wesley Professional.

    Google Scholar 

  24. Hillier, F. S., & Lieberman, G. J. (2005). Introduction to operations research (8th ed.). New York: McGraw-Hill.

    Google Scholar 

  25. Hladká, E., Holub, P., & Denemark, J. (2004). User-empowered programmable network support for collaborative environment. In 3rd European conference on universal multiservice networks (ECUMN 2004) (pp. 367–376).

  26. Holub, P., Hladká, E., & Matyska, L. (2005). Scalability and robustness of virtual multicast for synchronous multimedia distribution. In ICN 2005: 4th international conference on networking. Lecture notes in computer science (Vol. 3421, pp. 876–883). Heidelberg: Springer.

    Google Scholar 

  27. Holub, P., & Liška, M. (2005). High-definition video transmissions for medical applications and education. Technology and Health Care, 13(5), 398–400.

    Google Scholar 

  28. Holub, P., Matyska, L., Liška, M., Hejtmánek, L., Denemark, J., Rebok, T., et al. (2006). High-definition multimedia for multiparty low-latency interactive communication. Future Generation Computer Systems, 22(8), 856–861.

    Article  Google Scholar 

  29. Hutanu, A., Allen, G., Beck, S. D., Holub, P., Hartmut, K., Kulshrestha, A., et al. (2006). Distributed and collaborative visualization of large data sets using high-speed networks. Future Generation Computer Systems, 22(8), 1004–1010.

    Article  Google Scholar 

  30. Hutanu, A., Xin, Y., Thorpe, S., Holub, P., Paruchuri, R., Eiland, D., et al. (2007). Uncompressed HD video for collaborative teaching—An experiment. In The 3rd international conference on collaborative computing: Networking, applications and worksharing (pp. 253–261). ICST.

  31. ITU-T X.200 data network and open system communications (1994). Open systems interconnection—Model and notation. International Telecommunication Union (ITU).

  32. Kamarainen, O., & El Sakkout, H. (2004). Local probing applied to network routing. In Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2004). Lecture notes in computer science (Vol. 3011, pp. 173–189). Berlin: Springer.

    Chapter  Google Scholar 

  33. Kenny, E., Krzywania, R., Neophytou, O., Roberts, G., & Tyley, S. (2008). AutoBAHN: GEANT2 bandwidth on demand (BoD). Technical report deliverable DJ3.4.2, GEANT2.

  34. Kocay, W., & Kreher, D. L. (2004). Graphs, algorithms and optimization. Chapman & Hall/CRC.

  35. Kola, G., Kosar, T., & Livny, M. (2004). A fully automated fault-tolerant system for distributed video processing and off-site replication. In Proceedings of the 14th ACM international workshop on network and operating systems support for digital audio and video (NOSSDAV 2004), pp. 122–126.

  36. Kosar, T., & Livny, M. (2005). A framework for reliable and efficient data placement in distributed computing systems. Journal of Parallel and Distributed Computing, 65(10), 1146–1157.

    Article  Google Scholar 

  37. Lehman, T., Sobieski, J., & Jabbari, B. (2005). A survey of combinatorial optimization problems in multicast routing. Computers & Operations Research, 32(8), 1953–1981.

    Article  Google Scholar 

  38. Lehman, T., Sobieski, J., & Jabbari, B. (2006). Dragon: A framework for service provisioning in heterogeneous grid networks. IEEE Communication Magazine, 44(3), 84–90.

    Article  Google Scholar 

  39. Lever, J. (2005). A local search/constraint propagation hybrid for a network routing problem. International Journal on Artificial Intelligence Tools, 14(1–2), 43–60.

    Article  Google Scholar 

  40. Liu, X., Ravindran, K., & Loguinov, D. (2008). A stochastic foundation of available bandwidth estimation: Multi-hop analysis. IEEE/ACM Transactions on Networking, 16(1), 130–143.

    Article  Google Scholar 

  41. Liška, M., & Holub, P. (2008). CoUniverse: Framework for building self-organizing collaborative environments using extreme-bandwidth media applications. In Euro-Par 2008 workshops—Parallel processing. Lecture notes in computer science (Vol. 5415, pp. 339–351). Berlin: Springer.

    Google Scholar 

  42. Liška, M., Holub, P., Lake, A., & Vollbrecht, J. (2010). CoUniverse orchestrated collaborative environment with dynamic circuit networks. In ICN 2010: Ninth international conference on networks (pp. 300–305). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  43. Ma, Q., & Steenkiste, P. (1997). On path selection for traffic with bandwidth guarantees. In IEEE international conference on network protocols (pp. 191–202).

  44. MacLaren, J. (2009). HARC: The highly-available resource co-allocator. In On the move to meaningful internet systems 2007: CoopIS, DOA , ODBASE, GADA , and IS. Lecture notes in computer science (Vol. 4804, pp. 1385–1402). Berlin: Springer.

    Chapter  Google Scholar 

  45. Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of ACM, 7, 326–329.

    Article  MathSciNet  MATH  Google Scholar 

  46. Ouaja, W., & Richards, B. (2004). A hybrid multicommodity routing algorithm for traffic engineering. Networks, 43(3), 125–140.

    Article  MathSciNet  MATH  Google Scholar 

  47. Ouaja, W., & Richards, B. (2005). Hybrid Lagrangian relaxation for bandwith-constrained routing: Knapsack decomposition. In 20th annual ACM symposium on applied computing (pp. 383–387).

  48. Padmanabhan, V. N., Wang, H. J., Chou, P. A., & Sripanidkulchai, K. (2002). Distributing streaming media content using cooperative networking. In NOSSDAV ’02: Proceedings of the 12th international workshop on network and operating systems support for digital audio and video (pp. 177–186). New York: ACM.

    Chapter  Google Scholar 

  49. Pataki, G. (2003). Teaching integer programming formulations using the traveling salesman problem. SIAM Review, 45(1), 116–123.

    Article  MathSciNet  MATH  Google Scholar 

  50. Perkins, C., & Gharai, L. (2004). Real-time collaborative environments and the grid. In Proceedings of the workshop on advanced collaborative environments (WACE’04).

  51. Pinedo, M. L. (2005). Planning and scheduling in manufacturing and services. Springer series in operations research. Berlin: Springer.

    Google Scholar 

  52. Quemada, J., Miguel, T., Pavón, S., Huecas, G., Robles, T., Salvachúa, J., et al. (2004). Isabel: An application for real time audience interconnection over the internet. In Proc. Terena networking conference (TERENA ’04).

  53. Resende, M. G.C., & Pardalos, P. M. (Eds.) (2006). Handbook of optimization in telecommunications. Berlin: Springer.

    MATH  Google Scholar 

  54. Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). Handbook of constraint programming. Amsterdam: Elsevier.

    MATH  Google Scholar 

  55. Shimizu, T., Shirai, D., Takahashi, H., Murooka, T., Obana, K., Tonomura, Y., et al. (2006). International real-time streaming of 4K digital cinema. Future Generation Computer Systems, 22(8), 929–939.

    Article  Google Scholar 

  56. Simonis, H. (2006). Constraint application in networks. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (pp. 875–903). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  57. Sobieski, J., Lehman, T., Jabbari, B, Ruszczyk, C., Summerhill, R., & Whitney, A. (2006). Dynamic provisioning of lightpath services for radio astronomy applications. Future Generation Computer Systems, 22(8), 984–992.

    Article  Google Scholar 

  58. Suarez, T. L. (2007). Access grid technology in classroom and research environments. Journal of Supercomputing, 41(2), 133–145.

    Article  Google Scholar 

  59. Tu, Y.-C., Sun, J., Hefeeda, M., & Prabhakar, S. (2005). An analytical study of peer-to-peer media streaming systems. ACM Transactions on Multimedia Computing, Communications and Applications, 1(4), 354–376.

    Article  Google Scholar 

  60. Vishwanath, V., Balaji, P., Feng, W. C., Leigh, J., & Panda, D. K. (2006). A case for UDP offload engines in LambdaGrids. In 4th international workshop on protocols for fast long-distance networks (PFLDnet’06) (p. 5).

  61. Wesley-Smith, I., Liška, M., & Holub, P. (2008). Implementation of DXT compression for ultragrid. Technical report 4/2008, CESNET.

  62. Wu, M.-Y., Zhu, Y., & Shu, W. (2005). Placement of proxy-based multicast overlays. Computer Networks, 48(4), 627–655.

    Article  MATH  Google Scholar 

  63. Zerola, M., Barták, R., Lauret, J., & Šumbera, M. (2009). Efficient multi-site data movement in distributed environment. In Proceedings of the 10th IEEE/ACM international conference on grid computing (GRID) (pp. 171–172). Piscataway: IEEE.

    Chapter  Google Scholar 

  64. Zerola, M., Lauret, J., Barták, R., & Šumbera, M. (2008). Using constraint programming to resolve the multi-source/multi-site data movement paradigm on the grid. In XII advanced computing and analysis techniques in physics research.

  65. Zerola, M., Šumbera, M., Barták, R., & Lauret, J. (2009). Using constraint programming to plan efficient data movement on the grid. In 21st IEEE international conference on tools with artificial intelligence (pp. 729–733).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Rudová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holub, P., Rudová, H. & Liška, M. Data transfer planning with tree placement for collaborative environments. Constraints 16, 283–316 (2011). https://doi.org/10.1007/s10601-011-9106-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-011-9106-7

Keywords

Navigation