Skip to main content
Log in

Analysis of Pulse Wave Similarity in Photoplethysmograms

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The article focuses on the analysis of photoplethysmograms. The quality of a photoplethysmogram is assessed by solving the classification problem, i.e., identifying the patient from the photoplethysmogram. Efficient patient identification methods are proposed, including methods based on DTW and TWED metrics. Identification accuracy reaches 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Phys. Measur., 28, No. 3, 1–39 (2007).

    Article  Google Scholar 

  2. O. M. Drapkina, O. N. Dikur, Ya. I. Ashikhmin, A. S. Parfenov, and V. T. Ivashkin, “Endothelial function in patients with high-risk arterial hypertension,” Arter. Giper., 16, No. 2, 156–163 (2010).

    Google Scholar 

  3. L. A. Bortolotto, J. Blacher, T. Kondo, K. Takazawa, and M. E. Safar, “Assessment of vascular aging and atherosclerosis in hypertensive subjects: Second derivative of photoplethysmogram versus pulse wave velocity,” Amer. J. Hyper., 13, No. 2, 165–171 (2000).

    Article  Google Scholar 

  4. T. Otsuka, T. Kawada, M. Katsumata, and C. Ibuki, “Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population,” Circ. J., 70, No. 3, 304–310 (2006).

    Article  Google Scholar 

  5. C. Julien, “The enigma of Mayer waves: facts and models,” Cardiovasc. Research, Oxford University Press, 70, No. 1, 12–21 (2006).

  6. J. Nürnberger, A. Keflioglu-Scheiber, A. M. Opazo Saez, R. R. Wenzel, T. Philipp, and R. F. Schäfers, “Augmentation index is associated with cardiovascular risk,” J. Hypertens., 20, No. 12, 2407–2414 (2002).

    Article  Google Scholar 

  7. I. B. Wilkinson, K. Prasad, I. R. Hall, A. Thomas, H. MacCallum , D. J. Webb, M. P. Frenneaux, and J. R. Cockcroft, “Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia,” J. Am. Coll. Cardiol., 39, No. 6, 1005–1011 (2002).

    Article  Google Scholar 

  8. E. Dolan, L. Thijs, Y. Li, N. Atkins, P. McCormack, S. McClory, E. O’Brien, J. A. Staessen, and A. V. Stanton, “Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study,” Hypertension, Am. Heart Assoc., 47, No. 3, 365–370 (2006).

    Google Scholar 

  9. https://www.angioscan.ru/ru/ (accessed 16.04.2016)

  10. R. Goya-Esteban, O. Barquero-Pérez, F. Alonso-Atienza, E. Everss, J. Requena-Carrión, A. García-Alberola, J. L. Rojo-Álvarez, “A review on recent patents in digital processing for cardiac electric signals: From basic systems to arrhythmia analysis,” Recent Patents on Biomed. Eng., 2, 22–31(I), 32–47(II) (2009).

  11. W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, “Multiparameter respiratory rate estimation from the photoplethysmogram,” IEEE Trans Biomed. Eng., 60, No. 7, 1946–1953 (2013).

    Article  Google Scholar 

  12. U. R. Acharya, S. M. Krishnan, J. A. E. Spaan, and S. Jasjit, Advances in Cardiac Signal Processing, Springer (2007).

  13. O. A. Kharatsidi, Analysis of Blood Pressure Signals, Thesis, MGU, Moscow (2015).

  14. R. Duda and P. Hart, Image Recognition and Scene Analysis [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  15. D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to find patterns in time series,” Proceedings of the AAAI-94 Workshop on KDD, Seattle, WA, 10, No. 16, 359–370 (1994).

  16. C. A. Ratanamahatana and E. Keogh, “Everything you know about dynamic time warping is wrong,” in: Third Workshop on Mining Temporal and Sequential Data, Seattle, WA (2004), pp. 22–25.

  17. G. Strang, Linear Algebra and its Applications, Fourth Edition, Thomson Brooks/Cole (2005).

  18. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, 27, 861–874 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Golovina.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 53, 2016, pp. 46–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovina, A.M., D’yakonov, A.G. & Kharatsidi, O.A. Analysis of Pulse Wave Similarity in Photoplethysmograms. Comput Math Model 28, 339–349 (2017). https://doi.org/10.1007/s10598-017-9368-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-017-9368-z

Keywords

Navigation