Skip to main content
Log in

Sequential design strategy for kriging and cokriging-based machine learning in the context of reservoir history-matching

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Numerical models representing geological reservoirs can be used to forecast production and help engineers to design optimal development plans. These models should be as representative as possible of the true dynamic behavior and reproduce available static and dynamic data. However, identifying models constrained to production data can be very challenging and time consuming. Machine learning techniques can be considered to mimic and replace the fluid flow simulator in the process. However, the benefit of these approaches strongly depends on the simulation time required to train reliable predictors. Previous studies highlighted the potential of the multi-fidelity approach rooted in cokriging to efficiently provide accurate estimations of fluid flow simulator outputs. This technique consists in combining simulation results obtained on several levels of resolution for the reservoir model to predict the output properties on the finest level (the most accurate one). The degraded levels can correspond for instance to a coarser discretization in space or time, or to less complex physics. The idea behind is to take advantage of the coarse level low-cost information to limit the total simulation time required to train the meta-models. In this paper, we propose a new sequential design strategy for iteratively and automatically training (kriging and) cokriging based meta-models. As highlighted on two synthetic cases, this approach makes it possible to identify training sets leading to accurate estimations for the error between measured and simulated production data (objective function) while requiring limited simulation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The original PUNQ-S3 data set used to build the first test case considered in this paper is available online: http://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models/eclipse-dataset. The original Brugge data set used to build the second test case was provided by TNO. It can be requested to TNO via www.isapp2.com.

References

  1. Busby, D.: Hierarchical adaptive experimental design for Gaussian process emulators. Reliab. Eng. Syst. Safe. 94(7), 1183–1193 (2009). https://doi.org/10.1016/j.ress.2008.07.007

    Article  Google Scholar 

  2. Cardwell Jr., W.T., Parsons, R.L.: Average permeabilities of heterogeneous oil sands. Soc. Pet. Eng. 160, 34–42 (1945). https://doi.org/10.2118/945034-G

    Article  Google Scholar 

  3. Douarche, F., Da Veiga, S., Feraille, M., Enchéry, G., Touzani, S., Barsalou, R.: Sensitivity analysis and optimization of surfactant-polymer flooding under uncertainties. Oil Gas Sci. Technol. – Rev. d’IFP Energies Nouvelles. 69, 603–617 (2014). https://doi.org/10.2516/ogst/2013166

    Article  Google Scholar 

  4. Dubrule, O.: Cross validation of kriging in a unique neighborhood. J. Int. Assoc. Math. Geol. 15(6), 687–699 (1983). https://doi.org/10.1007/BF01033232

    Article  Google Scholar 

  5. Feraille, M., Marrel, A.: Prediction under uncertainty on a mature field. Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles. 67(2), 193–206 (2012). https://doi.org/10.2516/ogst/2011172

    Article  Google Scholar 

  6. Floris, F.J.T., Bush, M.D., Cuypers, M., Roggero, F., Syversveen, A.-R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet. Geosci. 7, S87–S96 (2001). https://doi.org/10.1144/petgeo.7.S.S87

    Article  Google Scholar 

  7. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009). https://doi.org/10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  8. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998). https://doi.org/10.1023/A:1008306431147

    Article  Google Scholar 

  9. Journel, A.G., Deutsch, C.V.: GSLIB Geostatistical Software Library and Users Guide, 2nd edn. Oxford University Press, New York (1998)

    Google Scholar 

  10. Kennedy, M., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika. 87, 1–13 (2000). https://doi.org/10.1093/biomet/87.1.1

    Article  Google Scholar 

  11. Le Gratiet, L.: Bayesian analysis of hierarchical multifidelity codes. SIAM/ASA J. Uncertain. Quantif. 1(1), 244–269 (2013). https://doi.org/10.1137/120884122

    Article  Google Scholar 

  12. Le Gratiet, L.: MuFiCokriging: multi-fidelity cokriging models. R package version 1.2 (2014) https://cran.r-project.org/web/packages/MuFiCokriging/index.html

  13. Le Gratiet, L., Cannamela, C.: Cokriging-based sequential design strategies using fast cross-validation techniques for multi-Fidelity computer codes. Technometrics. 57(3), 418–427 (2015). https://doi.org/10.1080/00401706

    Article  Google Scholar 

  14. Le Gratiet, L., Garnier, J.: Recursive cokriging model for design of computer experiments with multiple levels of Fidelity. Int. J. Uncertain. Quantif. 4(5), 365–386 (2014). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014006914

    Article  Google Scholar 

  15. Le Ravalec, M.: Optimizing well placement with quality maps derived from multi-fidelity meta-models. Paper SPE 154416 presented at the EAGE Annual Conference and Exhibition incorporating SPE Europec, Copenhagen, Denmark (2012) https://doi.org/10.2118/154416-MS

  16. Le Ravalec, M., Noetinger, B., Hu, L.: The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning gaussian simulations. Math. Geol. 32, 701–723 (2000). https://doi.org/10.1023/A:1007542406333

    Article  Google Scholar 

  17. Le Ravalec, M., Da Veiga, S., Derfoul, R., Enchéry, G., Gervais, V., Roggero, F.: Integrating data of different types and different supports into reservoir models. Oil Gas Sci. Technol. 67(5), 823–840 (2012). https://doi.org/10.2516/ogst/2012024

    Article  Google Scholar 

  18. Loeve, M.: Probability Theory, Vol. I–II. Springer, New York (1978)

    Google Scholar 

  19. Mardia, K.V., Marshall, R.J.: Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika. 71(1), 135–146 (1984)

    Article  Google Scholar 

  20. Marrel, A., Perot, N., Mottet, C.: Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stoch. Env. Res. Risk A. 29(3), 959–974 (2015). https://doi.org/10.1007/s00477-014-0927-y

    Article  Google Scholar 

  21. Matérn, B.: Spatial Variation. Springer, New York (1986)

    Book  Google Scholar 

  22. O’Hagan, A.: A Markov Property for Covariance structures. University of Nottingham (1998)

    Google Scholar 

  23. Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, N., Vossepoel, F.C., Xu, R., et al.: Results of the brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(03), 391–405 (2010). https://doi.org/10.2118/119094-PA

    Article  Google Scholar 

  24. Peters, E., Chen, Y., Leeuwenburgh, O., Oliver, D.: Extended Brugge benchmark case for history matching and water flooding optimization. Comput. Geosci. 50, 16–24 (2013). https://doi.org/10.1016/j.cageo.2012.07.018

    Article  Google Scholar 

  25. Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R., Kim, N.-H.: Adaptive designs of experiments for accurate approximation of a target region. J. Mech. Des. 132(7), 071008-1–071008-9 (2010). https://doi.org/10.1115/1.4001873

    Article  Google Scholar 

  26. Roustant, O., Ginsbourger, D., Deville, Y.: Dicekriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012). https://doi.org/10.18637/jss.v051.i01

    Article  Google Scholar 

  27. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989). https://doi.org/10.1214/ss/1177012413

    Article  Google Scholar 

  28. Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer Experiments. Springer-Verlab, New York (2003)

    Book  Google Scholar 

  29. Thenon, A., Gervais, V., Ravalec, M.L.: Multi-fidelity meta-modeling for reservoir engineering - application to history matching. Comput. Geosci. 20, 1231–1250 (2016). https://doi.org/10.1007/s10596-016-9587-y

    Article  Google Scholar 

  30. Xiong, S., Qian, P.Z.G., Wu, C.F.J.: Sequential design and analysis of high-accuracy and low-accuracy computer codes. Technometrics. 55(1), 37–46 (2012). https://doi.org/10.1080/00401706.2012.723572

    Article  Google Scholar 

  31. Yeten, B., Castellini, A., Guyaguler, B., Chen, W.H.: A Comparison Study on Experimental Design and Response Surface Methodologies. In SPE-93347-MS. SPE: Society of Petroleum Engineers (2005). https://doi.org/10.2118/93347-MS

    Book  Google Scholar 

  32. Zubarev, D.I.: Pros and Cons of Applying Proxy-Models as a Substitute for Full Reservoir Simulations. In SPE-124815-MS. SPE: Society of Petroleum Engineers (2009). https://doi.org/10.2118/124815-MS

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank TNO for providing the Brugge data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gervais.

Ethics declarations

Conflict of interest

Authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author A. Thenon is now with Modis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thenon, A., Gervais, V. & Le Ravalec, M. Sequential design strategy for kriging and cokriging-based machine learning in the context of reservoir history-matching. Comput Geosci 26, 1101–1118 (2022). https://doi.org/10.1007/s10596-022-10147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-022-10147-5

Keywords

Navigation