Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Computational Geosciences
  3. Article

PorePy: an open-source software for simulation of multiphysics processes in fractured porous media

  • Original Paper
  • Open access
  • Published: 14 October 2020
  • Volume 25, pages 243–265, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Computational Geosciences Aims and scope Submit manuscript
PorePy: an open-source software for simulation of multiphysics processes in fractured porous media
Download PDF
  • Eirik Keilegavlen  ORCID: orcid.org/0000-0002-0333-95071,
  • Runar Berge1,
  • Alessio Fumagalli1 nAff2,
  • Michele Starnoni1 nAff3,
  • Ivar Stefansson1,
  • Jhabriel Varela1 &
  • …
  • Inga Berre1 
  • 4558 Accesses

  • Explore all metrics

Abstract

Development of models and dedicated numerical methods for dynamics in fractured rocks is an active research field, with research moving towards increasingly advanced process couplings and complex fracture networks. The inclusion of coupled processes in simulation models is challenged by the high aspect ratio of the fractures, the complex geometry of fracture networks, and the crucial impact of processes that completely change characteristics on the fracture-rock interface. This paper provides a general discussion of design principles for introducing fractures in simulators, and defines a framework for integrated modeling, discretization, and computer implementation. The framework is implemented in the open-source simulation software PorePy, which can serve as a flexible prototyping tool for multiphysics problems in fractured rocks. Based on a representation of the fractures and their intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional grids, formulation of multiphysics problems, and discretizations that utilize existing software. We further present a Python implementation of these concepts in the PorePy open-source software tool, which is aimed at coupled simulation of flow and transport in three-dimensional fractured reservoirs as well as deformation of fractures and the reservoir in general. We present validation by benchmarks for flow, poroelasticity, and fracture deformation in porous media. The flexibility of the framework is then illustrated by simulations of non-linearly coupled flow and transport and of injection-driven deformation of fractures. All results can be reproduced by openly available simulation scripts.

Article PDF

Download to read the full article text

Similar content being viewed by others

A discrete fracture matrix framework for simulating single-phase flow and non-isothermal reactive transport

Article Open access 27 November 2024

Modeling interactions of natural and two-phase fluid-filled fracture propagation in porous media

Article 18 July 2020

Discrete fracture model for coupled flow and geomechanics

Article 29 January 2016

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Numerical Simulation
  • Porous media
  • Computational Physics and Simulations
  • Biomechanical Analysis and Modeling
  • Computational Solid Mechanics
  • Mathematical Software
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002). https://doi.org/10.1016/S0309-1708(02)00042-8

    Article  Google Scholar 

  2. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005). https://doi.org/10.1137/S1064827503429363

    Article  Google Scholar 

  3. Barton, N., Bandis, S., Bakhtar, K.: Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22(3), 121–140 (1985). https://doi.org/10.1016/0148-9062(85)93227-9

    Article  Google Scholar 

  4. Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008). https://doi.org/10.1007/s10596-007-9062-x

    Article  Google Scholar 

  5. Rutqvist, J., Wu, Y.-S., Tsang, C.-F., Bodvarsson, G.: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39(4), 429–442 (2002). https://doi.org/10.1016/S1365-1609(02)00022-9

    Article  Google Scholar 

  6. Burnell, J., et al.: Geothermal supermodels: the next generation of integrated geophysical, chemical and flow simulation modelling tools. Proc World Geotherm. Congr. 7 (2015)

  7. Pruess, K.: TOUGH2: a general numerical simulator for multiphase fluid and heat flow. Report LBL-29400 (1991)

  8. Hammond, G.E., Lichtner, P.C., Mills, R.T.: Evaluating the performance of parallel subsurface simulators: an illustrative example with PFLOTRAN: evaluating the parallel performance of Pflotran. Water Resour. Res. 50(1), 208–228 (2014). https://doi.org/10.1002/2012WR013483

    Article  Google Scholar 

  9. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24(5), 1286–1303 (1960). https://doi.org/10.1016/0021-8928(60)90107-6

    Article  Google Scholar 

  10. Arbogast, T., Douglas Jr., J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990). https://doi.org/10.1137/0521046

    Article  Google Scholar 

  11. Lemonnier, P., Bourbiaux, B.: Simulation of naturally fractured reservoirs. State of the art: part 1 – physical mechanisms and simulator formulation. Oil Gas Sci. Technol. Rev. L’Institut Fr. Pétrole. 65(2), 239–262 (2010). https://doi.org/10.2516/ogst/2009066

    Article  Google Scholar 

  12. Lemonnier, P., Bourbiaux, B.: Simulation of naturally fractured reservoirs. State of the art: part 2 – matrix-fracture transfers and typical features of numerical studies. Oil Gas Sci. Technol. – Rev. L’Institut Fr. Pétrole. 65(2), 263–286 (2010). https://doi.org/10.2516/ogst/2009067

    Article  Google Scholar 

  13. Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S.: dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 84, 10–19 (2015). https://doi.org/10.1016/j.cageo.2015.08.001

    Article  Google Scholar 

  14. Erhel, J., de Dreuzy, J.-R., Poirriez, B.: Flow simulation in three-dimensional discrete fracture networks. SIAM J. Sci. Comput. 31(4), 2688–2705 (2009). https://doi.org/10.1137/080729244

    Article  Google Scholar 

  15. Berrone, S., Pieraccini, S., Scialò, S.: On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35(2), A908–A935 (2013). https://doi.org/10.1137/120882883

    Article  Google Scholar 

  16. Berre, I., Doster, F., Keilegavlen, E.: Flow in fractured porous media: a review of conceptual models and discretization approaches. Transp. Porous Media. 130, 215–236 (2018). https://doi.org/10.1007/s11242-018-1171-6

    Article  Google Scholar 

  17. Noorishad, J., Mehran, M.: An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 18(3), 588–596 (1982). https://doi.org/10.1029/WR018i003p00588

    Article  Google Scholar 

  18. Baca, R.G., Arnett, R.C., Langford, D.W.: Modelling fluid flow in fractured-porous rock masses by finite-element techniques. Int. J. Numer. Methods Fluids. 4(4), 337–348 (1984). https://doi.org/10.1002/fld.1650040404

    Article  Google Scholar 

  19. Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29(7), 1020–1036 (2006). https://doi.org/10.1016/j.advwatres.2005.09.001

    Article  Google Scholar 

  20. Li, L., Lee, S.H.: Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reserv. Eval. Eng. 11(04), 750–758 (2008). https://doi.org/10.2118/103901-PA

    Article  Google Scholar 

  21. Fumagalli, A., Scotti, A.: A reduced model for flow and transport in fractured porous media with non-matching grids. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N., Levesley, J., Tretyakov, M.V. (eds.) Numerical Mathematics and Advanced Applications 2011, pp. 499–507. Springer, Berlin (2013)

    Chapter  Google Scholar 

  22. Flemisch, B., Fumagalli, A., Scotti, A.: A review of the XFEM-based approximation of flow in fractured porous media. In: Ventura, G., Benvenuti, E. (eds.) Advances in Discretization Methods, vol. 12, pp. 47–76. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  23. Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B.I.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19(6), 1219–1230 (2015). https://doi.org/10.1007/s10596-015-9536-1

    Article  Google Scholar 

  24. Jiang, J., Younis, R.M.: An improved projection-based embedded discrete fracture model (pEDFM) for multiphase flow in fractured reservoirs. Adv. Water Resour. 109, 267–289 (2017). https://doi.org/10.1016/j.advwatres.2017.09.017

    Article  Google Scholar 

  25. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMux: DUNE for multi-{phase,component,scale,physics,…} flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011). https://doi.org/10.1016/j.advwatres.2011.03.007

    Article  Google Scholar 

  26. Matthäi, S.K., Geiger, S., Roberts, S.G., Paluszny, A., Belayneh, M., Burri, A., Mezentsev, A., Lu, H., Coumou, D., Driesner, T., Heinrich, C.A.: Numerical simulation of multi-phase fluid flow in structurally complex reservoirs. Geol. Soc. Lond. Spec. Publ. 292(1), 405–429 (2007). https://doi.org/10.1144/SP292.22

    Article  Google Scholar 

  27. Gaston, D., Newman, C., Hansen, G., Lebrun-Grandié, D.: MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009). https://doi.org/10.1016/j.nucengdes.2009.05.021

    Article  Google Scholar 

  28. Breede, K., Dzebisashvili, K., Liu, X., Falcone, G.: A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm. Energy. 1(1), 4 (2013). https://doi.org/10.1186/2195-9706-1-4

    Article  Google Scholar 

  29. Wang, W., Kolditz, O.: Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int. J. Numer. Methods Eng. 69(1), 162–201 (2007). https://doi.org/10.1002/nme.1770

    Article  Google Scholar 

  30. Březina, J., Stebel, J.: Analysis of model error for a continuum-fracture model of porous media flow. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) High Performance Computing in Science and Engineering, vol. 9611, pp. 152–160. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  31. Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST), 1st edn. Cambridge University Press (2019)

  32. Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012). https://doi.org/10.1007/s10596-011-9244-4

    Article  Google Scholar 

  33. Alnæs, M., et al.: The FEniCS Project Version 1.5. Arch. Numer. Softw. 3, (2015). https://doi.org/10.11588/ans.2015.100.20553

  34. Blatt, M., et al.: The distributed and unified numerics environment, Version 2.4. Arch. Numer. Softw. 4, (2016). https://doi.org/10.11588/ans.2016.100.26526

  35. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43(3), 1–27 (2016). https://doi.org/10.1145/2998441

    Article  Google Scholar 

  36. Boon, W.M., Nordbotten, J.M., Vatne, J.E.: Functional analysis and exterior calculus on mixed-dimensional geometries. Ann. Mat. (2020). https://doi.org/10.1007/s10231-020-01013-1

  37. Boon, W.M., Nordbotten, J.M.: Stable mixed finite elements for linear elasticity with thin inclusions. arXiv. 1903.01757, (2019)

  38. Nordbotten, J.M., Boon, W.M., Fumagalli, A., Keilegavlen, E.: Unified approach to discretization of flow in fractured porous media. Comput. Geosci. 23(2), 225–237 (2019). https://doi.org/10.1007/s10596-018-9778-9

    Article  Google Scholar 

  39. Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  40. Karimi-Fard, M.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), (2004). https://doi.org/10.2118/88812-PA

  41. Hui, M.-H., Mallison, B., Lim, K.-T.: An innovative workflow to model fractures in a giant carbonate reservoir. Proc. Int. Pet. Tech. Conf. 15 (2008)

  42. Berre, I., et al.: Verification benchmarks for single-phase flow in three-dimensional fractured porous media. arXiv. 2002.07005, (2020)

  43. Boon, W.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203–2233 (2018). https://doi.org/10.1137/17M1139102

  44. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  45. Garipov, T.T., Karimi-Fard, M., Tchelepi, H.A.: Discrete fracture model for coupled flow and geomechanics. Comput. Geosci. 20(1), 149–160 (2016). https://doi.org/10.1007/s10596-015-9554-z

    Article  Google Scholar 

  46. Ucar, E., Keilegavlen, E., Berre, I., Nordbotten, J.M.: A finite-volume discretization for deformation of fractured media. Comput. Geosci. 22(4), 993–1007 (2018). https://doi.org/10.1007/s10596-018-9734-8

    Article  Google Scholar 

  47. McClure, M.W., Horne, R.N.: An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int. J. Rock Mech. Min. Sci. 72, 242–260 (2014). https://doi.org/10.1016/j.ijrmms.2014.07.011

    Article  Google Scholar 

  48. Coussy, O.: Poromechanics. Chichester, Wiley (2003)

    Book  Google Scholar 

  49. Berge, R.L., Berre, I., Keilegavlen, E., Nordbotten, J.M., Wohlmuth, B.: Finite volume discretization for poroelastic media with fractures modeled by contact mechanics. Int. J. Numer. Methods Eng. 121(4), 644–663 (2020). https://doi.org/10.1002/nme.6238

    Article  Google Scholar 

  50. Dong, S., Zeng, L., Dowd, P., Xu, C., Cao, H.: A fast method for fracture intersection detection in discrete fracture networks. Comput. Geotech. 98, 205–216 (2018). https://doi.org/10.1016/j.compgeo.2018.02.005

    Article  Google Scholar 

  51. Mallison, B.T., Hui, M.H., Narr, W.: Practical gridding algorithms for discrete fracture modeling workflows. presented at the 12th European Conference on the Mathematics of Oil Recovery, Oxford, UK (2010). https://doi.org/10.3997/2214-4609.20144950

  52. Holm, R., Kaufmann, R., Heimsund, B.-O., Øian, E., Espedal, M.S.: Meshing of domains with complex internal geometries. Numer. Linear Algebra Appl. 13(9), 717–731 (2006). https://doi.org/10.1002/nla.505

    Article  Google Scholar 

  53. Berge, R.L., Klemetsdal, Ø.S., Lie, K.-A.: Unstructured Voronoi grids conforming to lower dimensional objects. Comput. Geosci. 23(1), 169–188 (2019). https://doi.org/10.1007/s10596-018-9790-0

    Article  Google Scholar 

  54. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Applied Computational Geometry: Towards Geometric Engineering, vol. 1148, pp. 203–222 (1996)

    Chapter  Google Scholar 

  55. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 1–36 (2015). https://doi.org/10.1145/2629697

    Article  Google Scholar 

  56. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer, Berlin (2013)

    Book  Google Scholar 

  57. da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016). https://doi.org/10.1051/m2an/2015067

    Article  Google Scholar 

  58. da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: H(div) and H(curl) -conforming virtual element methods. Numer. Math. 133(2), 303–332 (2016). https://doi.org/10.1007/s00211-015-0746-1

    Article  Google Scholar 

  59. Nordbotten, J.M.: Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J. Numer. Anal. 53(6), 2605–2625 (2015). https://doi.org/10.1137/140972792

    Article  Google Scholar 

  60. Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Methods Eng. 112(8), 939–962 (2017). https://doi.org/10.1002/nme.5538

    Article  Google Scholar 

  61. Nordbotten, J.M.: Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal. 54(2), 942–968 (2016). https://doi.org/10.1137/15M1014280

    Article  Google Scholar 

  62. Nordbotten, J.M., Keilegavlen, E.: An introduction to multi-point flux (MPFA) and stress (MPSA) finite volume methods for thermo-poroelasticity. arXiv. 2001.01990, (2020)

  63. Hüeber, S., Stadler, G., Wohlmuth, B.I.: A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J. Sci. Comput. 30(2), 572–596 (2008). https://doi.org/10.1137/060671061

    Article  Google Scholar 

  64. Stefansson, I., Berre, I., Keilegavlen, E.: A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media. arXiv:2008.06289, (2020)

  65. Berge, R.L., Berre, I., Keilegavlen, E., Nordbotten, J.M.: Viscous fingering in fractured porous media. arXiv:1906.10472, (2019)

  66. Budisa, A., Boon, W., Hu, X.: Mixed-dimensional auxiliary space preconditioners. arXiv:1910.04704, (2019)

  67. Budiša, A., Hu, X.: Block preconditioners for mixed-dimensional discretization of flow in fractured porous media. Comput. Geosci. (2020). https://doi.org/10.1007/s10596-020-09984-z

  68. Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large data visualization

  69. Fumagalli, A., Keilegavlen, E., Scialò, S.: Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations. J. Comput. Phys. 376, 694–712 (2019). https://doi.org/10.1016/j.jcp.2018.09.048

    Article  Google Scholar 

  70. Fumagalli, A., Keilegavlen, E.: Dual virtual element methods for discrete fracture matrix models. Oil Gas Sci. Technol. – Rev. D’IFP Energ. Nouv. 74, 41 (2019). https://doi.org/10.2516/ogst/2019008

    Article  Google Scholar 

  71. Stefansson, I., Berre, I., Keilegavlen, E.: Finite-volume discretisations for flow in fractured porous media. Transp. Porous Media. 124(2), 439–462 (2018). https://doi.org/10.1007/s11242-018-1077-3

    Article  Google Scholar 

  72. PorePy implementation with runscripts. https://doi.org/10.5281/zenodo.3374624. (2019)

  73. Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 111, 239–258 (2018). https://doi.org/10.1016/j.advwatres.2017.10.036

    Article  Google Scholar 

  74. Mandel, J.: Consolidation des sols (étude mathématique). Geotechnique. 3(7), 287–299 (1953)

    Article  Google Scholar 

  75. Abousleiman, Y., Cheng, A.-D., Cui, L., Detournay, E., Rogiers, J.-C.: Mandel’s problem revisited. Geotechnique. 46(2), 187–195 (1996)

    Article  Google Scholar 

  76. Cheng, A.H.-D., Detournay, E.: A direct boundary element method for plane strain poroelasticity. Int. J. Numer. Anal. Methods Geomech. 12(5), 551–572 (1988). https://doi.org/10.1002/nag.1610120508

    Article  Google Scholar 

  77. Mikelić, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3–4), 325–341 (2014). https://doi.org/10.1007/s10596-013-9393-8

    Article  Google Scholar 

  78. Sneddon, I.N.: Fourier Transforms. Dover Publications, New York (1995)

    Google Scholar 

  79. Crouch, S.L., Starfield, A.M.: Boundary Element Methods in Solid Mechanics: with Applications in Rock Mechanics and Geological Engineering. Allen & Unwin, London (1983)

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for the comments and suggestions that helped to improve the quality of the paper.

Funding

Open Access funding provided by University of Bergen. This work has been funded in part by Norwegian Research Council grant 250223, 244129/E20, 267908/E20, and 274883, and by a VISTA Scholarship from the Norwegian Academy of Science and Letters.

Author information

Author notes
  1. Alessio Fumagalli

    Present address: MOX Laboratory, Department of Mathematics, Politecnico di Milano, via Bonardi 9, 20133, Milan, Italy

  2. Michele Starnoni

    Present address: Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy

Authors and Affiliations

  1. Department of Mathematics, University of Bergen, Pb 7800, 5020, Bergen, Norway

    Eirik Keilegavlen, Runar Berge, Alessio Fumagalli, Michele Starnoni, Ivar Stefansson, Jhabriel Varela & Inga Berre

Authors
  1. Eirik Keilegavlen
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Runar Berge
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Alessio Fumagalli
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Michele Starnoni
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Ivar Stefansson
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Jhabriel Varela
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Inga Berre
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Eirik Keilegavlen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 175 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keilegavlen, E., Berge, R., Fumagalli, A. et al. PorePy: an open-source software for simulation of multiphysics processes in fractured porous media. Comput Geosci 25, 243–265 (2021). https://doi.org/10.1007/s10596-020-10002-5

Download citation

  • Received: 26 August 2019

  • Accepted: 10 September 2020

  • Published: 14 October 2020

  • Issue Date: February 2021

  • DOI: https://doi.org/10.1007/s10596-020-10002-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Fractured reservoirs
  • Mixed-dimensional geometry
  • Numerical simulations
  • Multiphysics
  • Discrete fracture matrix models
  • Open-source software
  • Reproducible science

Profiles

  1. Eirik Keilegavlen View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature