Skip to main content
Log in

Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation

  • Review Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The objective is to capture the 3D spatial variation in the failure mode occurring in accretionary wedges and their analog experiments in the laboratory from the sole knowledge of the material strength and the structure geometry. The proposed methodology relies on the maximum strength theorem which is inherited from the kinematic approach of the classical limit analysis. It selects the optimum virtual velocity field which minimizes the tectonic force. These velocity fields are constructed by interpolation thanks to the spatial discretization conducted with ten-noded tetrahedra in 3D and six-noded triangles in 2D. The resulting, discrete optimization problem is first presented emphasizing the dual formalism found most appropriate in the presence of nonlinear strength criteria, such as the Drucker–Prager criterion used in all reported examples. The numerical scheme is first applied to a perfectly triangular 2D wedge. It is known that failure occurs to the back for topographic slope smaller than and to the front for slope larger than a critical slope, defining subcritical and supercritical slope stability conditions, respectively. The failure mode is characterized by the activation of a ramp, its conjugate back thrust, and the partial or complete activation of the décollement. It is shown that the critical slope is captured precisely by the proposed numerical scheme, the ramp, and the back thrust corresponding to regions of localized virtual strain. The influence of the back-wall friction on this critical slope is explored. It is found that the failure mechanism reduces to a thrust rooting at the base of the back wall and the absence of back thrust, for small enough values of the friction angle. This influence is well explained by the Mohr construction and further validated with experimental results with sand, considered as an analog material. 3D applications of the same methodology are presented in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderheggen, E., Knöpfel, H.: Finite element limit analysis using linear programming. Int. J. Solids Struct. 8, 1413–1431 (1972)

    Article  MATH  Google Scholar 

  2. Ben-Tal, A., Nemirovski, Y.: Lectures in Modern Convex Optimization: Analysis, Algorithms and Engineering Applications. MPS-SIAM Series on Optimization (2001)

  3. Bottero, A., Negre, R., Pastor, J., Turgeman, S.: Finite element method and limit analysis theory for soil mechanics problems. Comput. Methods Appl. Mech. Eng. 22, 131–149 (1980)

    Article  MATH  Google Scholar 

  4. Cubas, N.: Thrusting sequences: mechanical predictions, analogue validation and application to the Agrio belt (Argentina), 233, 102–109 (2009)

  5. Cubas, N., Leroy, Y.M., Maillot, B.: Prediction of thrusting sequences in accretionary wedges. J. Geophys. Res., J. Geophys. Res. 113, B12412 (2008). doi:10.1029/2008JB005717

    Google Scholar 

  6. Davis, R.O., Selvadurai, A.P.: Plasticity and Geomechanics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  7. Dahlen, F.A.: Noncohesive critical Coulomb wedges: an exact solution. J. Geophys. Res. 89(B12), 10125–10133 (1984)

    Article  Google Scholar 

  8. Krabbenhøft, K., Damkilde, L.: A general nonlinear optimization algorithm for lower bound limit analysis. Int. J. Numer. Methods Eng. 56, 165–184 (2003)

    Article  MATH  Google Scholar 

  9. Krabbenhøft, K., Lyamin, A.V., Hjiaj, M., Sloan, S.W.: A new discontinuous upper bound limit analysis formulation. Int. J. Numer. Methods. Eng. 63, 1069–1088 (2005)

    Article  MATH  Google Scholar 

  10. Krabbenhøft, K., Lyamin, A.V., Sloan, S.W.: Formulation and solution of some plasticity problems as conic programs. Int. J. Solids Struct. 44, 1533–1549 (2007)

    Article  Google Scholar 

  11. Krabbenhøft, K., Lyamin, A.V., Sloan, S.W.: Three-dimensional Mohr–Coulomb limit analysis using semidefinite programming. Commun. Numer. Methods Eng. 24, 1107–1119 (2008)

    Google Scholar 

  12. Lehner, F.K.: Comments on “Noncohesive Critical Coulomb Wedges: an Exact Solution”. J. Geophys. Res. 91(B1), 793–796 (1986)

    Article  Google Scholar 

  13. Lyamin, A.V., Sloan, S.W.: Upper bound limit analysis using linear finite elements and non-linear programming. Int. J. Numer. Anal. Methods Geomech. 26, 181–216 (2002)

    Article  MATH  Google Scholar 

  14. Maillot, B., Leroy, Y.M.: Optimal dip based on dissipation of back thrusts and hinges in fold-and-thrust belts. J. Geophys. Res. 108(B6), 2320–2336 (2003)

    Article  Google Scholar 

  15. Maillot, B., Leroy, Y.M.: Kink-fold onset and development based on the maximum strength theorem. J. Mech. Phys. Solids 54, 2030–2059 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mandl, G.: Rock Joints. The Mechanical Genesis. Springer, New York (2005)

    Google Scholar 

  17. MOSEK: Optimization Software. http://www.mosek.com (2008)

  18. Pastor, J.: Limit analysis: numerical determination of complete statical solutions. Application to the vertical cut. J. Méch. Appl. 2, 168–196 (1978) (in French)

    Google Scholar 

  19. Pastor, F., Thore, Ph., Loute, E., Pastor, J., Trillat, M.: Convex optimization and limit analysis: application to Gurson and porous Drucker–Prager materials. Eng. Fract. Mech. 75, 1367–1383 (2008)

    Article  Google Scholar 

  20. Salençon, J.: Théorie de la plasticité pour les applications à la mécanique des sols, edited by Eyrolles, Paris, (English translation: Applications of the theory of plasticity in soil mechanics. Wiley, Chichester, 1977) (1974)

  21. Salençon, J.: De l’élasto-plasticité au calcul à la rupture. Editions École Polytechnique, Palaiseau, and Ellipses, Paris (2002)

  22. SARPP: Structural Analysis and Rock Physics Program, Finite-element and Limit-analysis General Program. Ecole Normale Supérieure, Paris (2008)

    Google Scholar 

  23. Schreurs, G., Buiter, S.J.H., Boutelier, D., Corti, G., Costa, E., Cruden, A.R., Daniel, J.-M., Hoth, S., Koyi, H.A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R.W., Oliver Withjack, M., Yamada, Y., Cavozzi, C., Delventisette, C., Elder Brady, J.A., Hoffmann-Rothe, A., Mengus, J.M., Montanari, D., Nilforoushan, F.: Analogue benchmarks of shortening and extension experiments. In: Buiter, S.J.H., Schreurs, G. (eds.) Analogue and Numerical Modelling of Crustal-scale Processes, pp. 1–27. London Geol. Soc. Spec. Publ. (2006)

  24. Sciamanna, S., Sassi, W., Gambini, R., Rudkiewicz, J.L., Mosca, F., Nicolai, C.: Predicting hydrocarbon generation and expulsion in the Southern Apennines Thrust Belt by 2D integrated structural and geochemical modeling: part I—structural and thermal evolution. In: Swennen, R., Roure, F., Granath, J.W. (eds.) Deformation, Fluid Flow, and Reservoir Appraisal in Foreland Fold and Thrust Belts. A.A.P.G. Heldberg Series, vol. 1, pp.51–67. AAPG, Tulsa (2004)

    Google Scholar 

  25. Sloan, S.W.: Upper bound limit analysis using finite elements and linear programming. Int. J. Numer. Anal. Methods Geomech. 13, 263–282 (1989)

    Article  MATH  Google Scholar 

  26. Sloan, S.W., Kleeman, P.W.: Upper bound limit analysis using discontinuous velocity fields. Comput. Methods Appl. Mech. Eng. 127, 293–314 (1995)

    Article  MATH  Google Scholar 

  27. Souloumiac, P.: 3D failure mechanisms in structural geology: numerical and analogue approaches (partly in French), Doctoral thesis of École Centrale Paris, Châtenay Malabry. France 127, 293–314 (2009)

  28. Souloumiac, P., Leroy, Y.M., Maillot, B., Krabbenhøft, K.: Predicting stress distributions in fold-and-thrust belts and accretionary wedges by optimization. J. Geophys. Res. 114, B09404 (2009). doi:10.1029/2008JB005986.

    Article  Google Scholar 

  29. Suppe, J.: Geometry and kinematics of fault-bend folding. Am. J. Sci. 283(7) 684–721 (1983)

    Google Scholar 

  30. Zoetemeijer, R., Sassi, W.: 2D reconstruction of thrust evolution using the fault-bend fold method. In McClay, K. (ed) Thrust tectonics, pp. 133–140. London Geol. Soc. Spec. Publ (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Souloumiac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souloumiac, P., Krabbenhøft, K., Leroy, Y.M. et al. Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation. Comput Geosci 14, 793–811 (2010). https://doi.org/10.1007/s10596-010-9184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-010-9184-4

Keywords

Navigation