Skip to main content
Log in

Computation of influence functions for automatic mining subsidence prediction

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents a computer tool that automatically predicts mining subsidence using the generalized n-k-g influence function detailed in (González Nicieza et al. Int J Rock Mech Min Sci 42(3):372–387, 2005). This function depends on two physical concepts: the first is gravity, which characterizes the forces acting on the ground, and the second, the convergence of the roof and floor of the mine workings due to the stress state of the ground. The developed tool also allows other influence functions to be used to predict subsidence, namely the spatial influence function (Ramírez Oyanguren et al. 2000) and the normal-type classical (Knothe, Arch Gór Hut 1, 1952) and modified (González Nicieza et al. Bull Eng Geol Environ 66(3):319–329, 2007) time functions. Moreover, the inputting and periodic updating of data from subsidence monitoring surveys is controlled by one of the tool’s modules using a method that minimizes errors resulting from time discontinuities in landmarks measurements. In addition, when actual landmarks measurements exist, the developed tool allows calibration of the subsidence parameters, minimizing the errors between actual measurements and those obtained by prediction. The tool includes a viewer, developed using OpenGL, which enables the results of the calculations carried out to be viewed, allowing the point of view to be varied. It also includes the option of viewing and saving the results of the calculations carried out over the original topographic plane defined in the AutoCAD DXF data file format. The efficacy of the tool is demonstrated via its application to a real case of mining work carried out in a village in the Principality of Asturias, Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holla, L.: Ground movement due to longwall mining in high relief areas in New South Wales, Australia. International Journal Rock Mechanics and Mining Sciences 34(5), 775–787 (1997)

    Article  MathSciNet  Google Scholar 

  2. González Nicieza, C., Díaz Aguado, M.B., Álvarez Fernández, M.I., Solar Menéndez, J.B.: Subsidence analysis and prediction based on a real case. 30th International Conference of Safety in Mines Research Institutes, Johannesburg (2003)

  3. Li, X., Wang, S.J., Liu, T.Y., Ma, F.S.: Engineering geology, ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine. Engineering Geology 76(1–2), 93–107 (2004)

    Article  Google Scholar 

  4. Deng, J., Bian, L.: Investigation and characterization of mining subsidence in Kaiyang Phosphorus Mine. J. Cent. South Univ. Technol. 14(3), 413–417 (2007)

    Article  Google Scholar 

  5. Baek, J., Kim, S.W., Park, H.J., Jung, H.S., Kim, K.D., Kim, J.W.: Analysis of ground subsidence in coal mining area using SAR interferometry. Geosci. J. 12(3), 277–284 (2008)

    Article  Google Scholar 

  6. General Institute of Mining Surveying: The movements of the rock masses and of the surface in the main coal fields from the Soviet Union. Ugletkhizdat, Moscow (1958)

  7. National Coal Board: Subsidence engineer’s handbook. National Coal Board, London (1975)

    Google Scholar 

  8. Ou, Z., Zhu, J.: Improving the Pearson function method for the calculation of surface movement after mining a steep seam. Coal Science & Technology, Beijing (1984)

    Google Scholar 

  9. Rodriguez Díez, R., Toraño Alvarez, J.: Hypothesis of the multiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions. Geotech. Geolog. Eng. 18, 289–311 (2000)

    Article  Google Scholar 

  10. Coulthard, M.A., Dutton, A.J.: Numerical modelling of subsidence induced by underground coal mining. Key Questions in Rock Mechanics 1988. In: Proceedings of the 29th United States Rock Mechanics Symposium, pp. 529–536. Missouri (1988)

  11. Yao, X.L., Reddish, D.J., Whittaker, B.N.: Non linear finite element analysis of surface subsidence arising from inclined seam extraction. International Journal of Rock Mechanics & Mining Sciences 30(45), 431–441 (1993)

    Article  Google Scholar 

  12. Alejano, L.R.: Hundimientos mineros: un método de predicción aplicado a capas de carbón horizontales e inclinadas y a explotaciones potásicas. Ph. D. Thesis. Escuela Técnica Superior de Ingenieros de Minas. Universidad Politécnica de Madrid (1996)

  13. González Nicieza, C., Álvarez Fernández, M.I., Menéndez Díaz, A., Álvarez Vigil, A.E.: The new three-dimensional subsidence influence function denoted by n–k–g. Int. J. Rock Mech. Min. Sci. 42(3), 372–387 (2005)

    Article  Google Scholar 

  14. Ramírez Oyanguren, P., Rambaud Perez, C., et al.: Hundimientos mineros: Métodos de Cálculo. Instituto Tecnológico Geominero de España, Madrid (2000)

    Google Scholar 

  15. Beyer, F.: On predicting ground deformations due to mining flat seams. Habilitation Thesis, Tech. Univ. Berlin (1945)

  16. Litwiniszyn, J.: The theories and model research of movements of ground masses. Proceedings European Congress on Ground Movement, pp 202–209. University of Leeds (1957)

  17. Ehrhardt, W., Sauer, A.: Precalculation of subsidence, tilt and curvature over extractions in flat formations. Proceedings Symposium on Rock Mechanics. Kracow (1961)

  18. Lin, S., Whittaker, B., Reddish, D.J.: Application of asymmetrical influence functions for subsidence prediction of gently inclined seam extractions. Int. J. Rock Mech. Min. Sci. Geomech. 29(5), 479–490 (1992)

    Article  Google Scholar 

  19. Sheorey, P.R., Loui, J.P., Singh, K.B., Singh, S.K.: Ground subsidence observations and a modified influence function method for complete subsidence prediction. Int. J. Rock Mech. Min. Sci. 37(5), 801–818 (2000)

    Article  Google Scholar 

  20. Knothe, S.: Time influence on a formation of a subsidence surface. Arch. Gór. Hut. 1 (1952)

  21. Jarosz, A., Karmis, M., Sroka, A.: Subsidence development with time experiences from longwall operations. Geotech. Geolog. Eng. 8(3), 261–273 (1990)

    Google Scholar 

  22. Cui, X., Wang, J., Liu, Y.: Prediction of progressive surface subsidence above longwall coal mining using a time function. Int. J. Rock Mech. Min. Sci. 38, 1057–1063 (2001)

    Article  Google Scholar 

  23. Álvarez Fernández, M.I., González Nicieza, C., Menéndez Díaz, A., Álvarez Vigil, A.E.: Generalization of the n-k influence function to predict mining subsidence. Eng. Geol. 80, 1–36 (2005)

    Article  Google Scholar 

  24. González Nicieza, C., Álvarez Fernández, M.I., Menéndez Díaz, A., Álvarez Vigil, A.E.: The influence of time on subsidence in the Central Asturias Coalfield. Bull. Eng. Geol. Environ. 66(3), 319–329 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Álvarez-Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Fernández, M.E., Álvarez-Fernández, M.I. & Álvarez-Vigil, A.E. Computation of influence functions for automatic mining subsidence prediction. Comput Geosci 14, 83–103 (2010). https://doi.org/10.1007/s10596-009-9134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9134-1

Keywords

Navigation