Skip to main content

Advertisement

Log in

Genetic evidence of fragmented populations and inbreeding in the Colombian endemic Dahl’s toad-headed turtle (Mesoclemmys dahli)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Population fragmentation is one of the most concerning consequences of habitat fragmentation, as small and isolated populations suffer increased genetic drift and inbreeding. However, the extent to which habitat fragmentation leads to population fragmentation depends not only on the landscape structure, but also on the response of organisms to it. This behavioral component makes it difficult to detect population fragmentation even if the habitat is fragmented, unless appropriate tools are used. In this study, we used a molecular approach to evaluate if Dahl’s toad-headed turtle (Mesoclemmys dahli) population was fragmented, given that it occurs in a very restricted area within the most degraded biome of Colombia, the tropical dry forest. We developed a panel of 15 microsatellite loci in order to perform the first genetic assessment of M. dahli across its complete geographic range. We found that M. dahli has significant genetic structure with at least four subpopulations, with surprisingly moderate to high levels of genetic diversity. Despite high levels of genetic diversity, subpopulations are very small (effective population sizes < 50) and isolated, with little to no contemporary gene flow among them. As a consequence, mating among related individuals has been occurring, and all four populations are showing high degrees of inbreeding. To counteract this threat, we recommend an urgent genetic rescue strategy accompanied by habitat restoration, and advocate for a new conservation status assessment, not based on geographic range, but on adult population size and level of fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Photograph: M. Vargas-Ramírez

Similar content being viewed by others

References

  • Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetic of populations. Wiley-Blackwell, Oxford

    Google Scholar 

  • Armenteras D, Gast F, Villareal H (2003) Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes. Colombia Biol Conserv 113:245–256. doi:10.1016/S0006-3207(02)00359-2

    Article  Google Scholar 

  • Baguette M, Blanchet S, Legrand D et al (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326. doi:10.1111/brv.12000

    Article  PubMed  Google Scholar 

  • Balkenhol N, Cushman S, Storfer A, Waits L (2015) Landscape genetics: concepts, methods, applications. Wiley-Blackwell, West Sussex

    Book  Google Scholar 

  • Balloux F (2004) Heterozygote excess in small populations and the heterozygote-excess effective population size. Evol Int J Org Evol 58:1891–1900. doi:10.1111/j.0014-3820.2004.tb00477.x

    Article  Google Scholar 

  • Barnett JR, Ruiz-Gutierrez V, Coulon A, Lovette IJ (2008) Weak genetic structuring indicates ongoing gene flow across White-ruffed Manakin (Corapipo altera) populations in a highly fragmented Costa Rica landscape. Conserv Genet 9:1403–1412. doi:10.1007/s10592-007-9463-3

    Article  Google Scholar 

  • Brzeski KE, Rabon DR, Chamberlain MJ et al (2014) Inbreeding and inbreeding depression in endangered red wolves (Canis rufus). Mol Ecol 23:4241–4255. doi:10.1111/mec.12871

    Article  PubMed  Google Scholar 

  • Callens T, Galbusera P, Matthysen E et al (2011) Genetic signature of population fragmentation varies with mobility in seven bird species of a fragmented Kenyan cloud forest. Mol Ecol 20:1829–1844. doi:10.1111/j.1365-294X.2011.05028.x

    Article  PubMed  Google Scholar 

  • Cárdenas-Arevalo G, Gallego-García N, Castaño-Mora OV (in press) Distribución, historia natural y estado de conservación de las tortugas continentales en el departamento de Córdoba, Colombia. Biblioteca José Jerónimo Triana

  • Castaño-Mora OV, Medem F (2002) Batrachemys dahli. In: Libro rojo de reptiles de Colombia. Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del Medio Ambiente, Conservación Internacional-Colombia, Bogotá, pp 77–79

    Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, VonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Edwards AWF (1971) Distances between populations on the basis of gene frequencies. Biometrics 27:873–881

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Ellegren N (2016) Determinants of genetic diversity. Nat Rev Genet 17:422–433. doi:10.1038/nrg.2016.58

    Article  CAS  PubMed  Google Scholar 

  • England PR, Osler GHR, Woodworth LM et al (2003) Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv Genet 4:595–604. doi:10.1023/A:1025639811865

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Forero-Medina G, Joppa L (2010) Representation of global and national conservation priorities by Colombia’s protected area network. PLoS ONE 5:e13210. doi:10.1371/journal.pone.0013210

    Article  PubMed  PubMed Central  Google Scholar 

  • Forero-Medina G, Cárdenas-Arevalo G, Castaño-Mora OV (2011) Abundance, home range, and movement patterns of the endemic species Dahl’s Toad-headed turtle (Mesoclemmys dahli) in Cesar, Colombia. Chelonian Conserv Biol 10:228–236. doi:10.2744/ccb-0929.1

    Article  Google Scholar 

  • Forero-Medina G, Cárdenas-Arevalo G, Castaño-M O V (2012) Habitat modeling of Dahl’s toad-headed turtle Mesoclemmys dahli in Colombia. Herpetol Conserv Biol 7:313–322

    Google Scholar 

  • Forero-Medina G, Castaño-Mora OV, Cárdenas-Arevalo G, Medina-Rangel G (2013) Mesoclemmys dahli (Zangerl and Medem 1958) – Dahl’ s toad-headed turtle, Carranchina, Tortuga Montañera. In: Rhodin AGJ, Pritchard PCH, Dijk PP van et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group, vol 5. Chelonian Research Monographs, Lunenburg, pp 069.1–069.8

    Google Scholar 

  • Forero-Medina G, Yusti-Muñoz AP, Castaño-Mora OV (2014) Distribución geográfica de las tortugas continentales de Colombia y su representación en áreas protegidas. Acta Biológica Colomb 19:415–426

    Article  Google Scholar 

  • Forero-Medina G, Castaño-Mora OV, Cárdenas-Arevalo G et al (2015) Mesoclemmys dahli. In: Morales-Betancourt MA, Lasso CA, Páez VP, Bock BC (eds) Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Universidad de Antioquia, Bogotá, pp 142–145

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi:10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618. doi:10.1111/mec.13139

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63. doi:10.1016/j.biocon.2013.12.036

    Article  Google Scholar 

  • Garza C, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • IUCN (2016) The IUCN red list of threatened species. Version 2016-2. http://www.iucnredlist.org. Accessed 4 Sep 2016

  • Jombart T (2008) Adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi:10.1016/S0169-5347(02)02489-8

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Harper & Row, New York

    Google Scholar 

  • Kuo CH, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata). Conserv Genet 5:425–437. doi:10.1023/B:COGE.0000041020.54140.45

    Article  CAS  Google Scholar 

  • Luikart G, Cornuet J (1998) Empirical evaluation of a test for identifying allele recently data bottlenecked populations from frequency data. Soc Conserv Biol 12:228–237. doi:10.1111/j.1523-1739.1998.96388.x

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247. doi:10.1093/jhered/89.3.238

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489. doi:10.1086/285812

    Article  Google Scholar 

  • Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157. doi:10.1111/j.1523-1739.1991.tb00119.x

    Article  Google Scholar 

  • Mace GM, Collar NJ, Gaston KJ et al (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442. doi:10.1111/j.1523-1739.2008.01044.x

    Article  PubMed  Google Scholar 

  • Medem F (1966) Contribuciones al conocimiento sobre la ecología y distribución geográfica de Phrynops (Batrachemys) dahli; (Testudinata, Pleurodira, Chelidae). Caldasia 9:467–489

    Google Scholar 

  • Medina-Rangel G, Forero-Medina G (2008) Mesoclemmys dahli (Dahl’s Toad Headed Turtle). Herpetol Rev 39:336

    Google Scholar 

  • Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733. doi:10.1111/1755-0998.12216

    Article  PubMed  Google Scholar 

  • Palsbøll PJ, Zachariah Peery M, Olsen MT et al (2013) Inferring recent historic abundance from current genetic diversity. Mol Ecol 22:22–40. doi:10.1111/mec.12094

    Article  PubMed  Google Scholar 

  • Pizano C, García H (eds) (2014) El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humbold. Bogotá, D. C., Colombia

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falushb D (2010) Documentation for structure software: Version 2.3. University of Chicago, Department of Human Genetics, Chicago

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J Org Evol 43:258–275

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191. doi:10.1017/S1367943004001313

    Article  Google Scholar 

  • Roffler GH, Schwartz MK, Pilgrim KL et al (2016) Identification of landscape features influencing gene flow: how useful are habitat selection models? Evol Appl 9:805–817. doi:10.1111/eva.12389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: A program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rueda-Almonacid JV, Galvis-Peñuela P, López-Ospina C, Lozano GY (2004) Estudio sobre la distribución geográfica y el estatus ecológico de la tortuga carranchina (Batrachemys dahli) en el bajo Sinú, departamento de Córdoba. Final report to Corporación. Autónoma Regional de los Valles del Sinú y San Jorge – CVS and Conservación Internacional-Colombia, Bogotá

  • Rueda-Almonacid JV, Carr JL, Mittermeier RA et al (2007) Las tortugas y los cocodrilianos de los países andinos del trópico. Editorial Panamericana, formas e impresos, Bogotá

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  • Sebastien P (2015) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: sub-sampling and new estimators alleviate the problem. Mol Ecol Resour 608–627. doi:10.1111/1755-0998.12512

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • van Dijk PP, Iverson J, Rhodin A et al (2014) Turtles of the world, 7th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. In: Rhodin AGJ, Pritchard PCH, van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group, vol 5. Chelonian Research Monographs, Lunenburg, pp 329–479

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. doi:10.1046/j.1365-294X.2004.02076.x

    Article  CAS  PubMed  Google Scholar 

  • Vinet L, Zhedanov A (2010) A “missing” family of classical orthogonal polynomials. Genetics 144:2001–2014. doi:10.1088/1751-8113/44/8/085201

    Google Scholar 

  • Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164. doi:10.1111/j.1365-294X.2009.04175.x

    Article  PubMed  Google Scholar 

  • Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145. doi:10.1111/j.1755-0998.2010.02885.x

    Article  PubMed  Google Scholar 

  • Wang J (2016) A comparison of single-sample estimators of effective population sizes from genetic marker data. Mol Ecol 4692–4711. doi:10.1111/mec.13725

  • Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19. doi:10.1093/jhered/esu062

    Article  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Zangerl R, Medem F (1958) A new species of chelid turtle, Phrynops (Batrachemys) dahli, from Colombia. Bull Museum Comp Zool 119:375–390

    Google Scholar 

Download references

Acknowledgements

We thank field researchers Luis Eduardo Rojas, Jhon Fredy Gaitán and Oscar Díaz for their invaluable help in sample collection. We thank the laboratory technicians Sonia Quintanilla and Mauricio Buitrago. This project was funded by Ecopetrol S.A. as part of their Tropical Dry Forest Initiative in Colombia. We thank the Wildlife Conservation Society, Turtle Survival Alliance, Fundación Mario Santo Domingo, and Universidad de los Andes for technical and financial support. Sampling and access to genetic resources allowed by “Contrato de acceso a recursos genéticos para investigación científica sin interés comercial No. 65, signed between the Ministerio de Ambiente y Desarrollo Sostenible de Colombia and Mario Vargas-Ramírez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Gallego-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallego-García, N., Vargas-Ramírez, M., Forero-Medina, G. et al. Genetic evidence of fragmented populations and inbreeding in the Colombian endemic Dahl’s toad-headed turtle (Mesoclemmys dahli). Conserv Genet 19, 221–233 (2018). https://doi.org/10.1007/s10592-017-1021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-1021-z

Keywords

Navigation