Skip to main content

Advertisement

Log in

Social structure and landscape genetics of the endemic New Caledonian ant Leptomyrmex pallens Emery, 1883 (Hymenoptera: Formicidae: Dolichoderinae), in the context of fire-induced rainforest fragmentation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation is a major threat to biodiversity, as it can alter ecological processes at various spatial and trophic scales. At the species level, fragmentation leading to the isolation of populations can trigger reductions in genetic diversity, potentially having detrimental effects on population fitness, adaptability and ultimately population persistence. Leptomyrmex pallens is a widespread rainforest ant endemic to New Caledonia but now confined to habitat patches that have been fragmented by anthropogenic fire regimes over the last 200 years. We investigated the social structure of L. pallens in the Aoupinié region (c.a. 4900 ha), and assessed the impacts of habitat fragmentation on its population genetic structure. Allele frequencies at 13 polymorphic microsatellite loci were compared among 411 worker ants from 21 nests distributed across the region. High within-nest relatedness (r = 0.70 ± 0.02), and a single queen found in 38 % of the nests by pedigree analysis indicate that the species is monogynous to weakly polygynous. Estimates of gene flow and genetic structure across the region were subsequently determined using a combined dataset of single workers per nest and of unrelated foraging workers. These estimates coupled with a comprehensive landscape genetic analysis revealed no evidence of significant population structure or habitat effects, suggesting that the Aoupinié region harbours a single panmictic population. In contrast, analyses of mitochondrial DNA sequence data revealed a high degree of genetic structuring, indicating limited maternal gene flow and suggesting that gene flow among nests is driven primarily by winged males. Overall these findings suggest that fire-induced habitat fragmentation has had little impact on the population dynamics of L. pallens. Additional studies of less mobile species should therefore be conducted to gain further insights into fire related disturbances on the unique biodiversity and function of New Caledonian ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen AN, Majer J (2004) Ants show the way Down Under: invertebrates as bioindicators in land management. Front Ecol Environ 2(6):291–298. doi:10.1890/1540-9295(2004)002[0292:astwdu]2.0.co;2

    Article  Google Scholar 

  • Anderson A (2002) Faunal collapse, landscape change and settlement history in Remote Oceania. World Archaeol 33(3):375–390. doi:10.1080/00438240120107431

    Article  Google Scholar 

  • André J-B, Peeters C, Doums C (2001) Serial polygyny and colony genetic structure in the monogynous queenless ant Diacamma cyaneiventre. Behav Ecol Sociobiol 50(1):72–80. doi:10.1007/s002650100330

    Article  Google Scholar 

  • Bauer AM, Sadlier RA (2000) The Herpetofauna of New Caledonia. Society for the Study of Amphibians and Reptiles in cooperation with the Institut de recherche pour le developpement. Ithica, New York

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. 4.05 edn. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)

  • Berman M, Andersen AN, Hély C, Gaucherel C (2013a) Overview of the distribution, habitat association and impact of exotic ants on native ant communities in New Caledonia. PLoS ONE. doi:10.1371/journal.pone.0067245

    Google Scholar 

  • Berman M, Andersen AN, Ibanez T (2013b) Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia. Biol Invasions 15(10):2311–2331. doi:10.1007/s10530-013-0455-6

    Article  Google Scholar 

  • Berman M, Austin CM, Miller AD (2014) Characterisation of the complete mitochondrial genome and 13 microsatellite loci through next-generation sequencing for the New Caledonian spider-ant Leptomyrmex pallens. Mol Biol Rep 41(3):1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Bickel TO, Brühl CA, Gadau JR, Hölldobler B, Linsenmair KE (2006) Influence of habitat fragmentation on the genetic variability in leaf litter ant populations in tropical rainforests of Sabah, Borneo. Biodivers Conserv 15(1):157–175. doi:10.1007/s10531-004-4248-1

    Article  Google Scholar 

  • Blacket MJ, Robin C, Good RT, Lee SF, Miller AD (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12(3):456–463. doi:10.1111/j.1755-0998.2011.03104.x

    Article  CAS  PubMed  Google Scholar 

  • Bourke AF, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  • Brookfield J (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5(3):453–455

    Article  CAS  PubMed  Google Scholar 

  • Chapuisat M, Bocherens S, Rosset H, Harrison R (2004) Variable queen number in ant colonies: no impact on queen turnover, inbreeding, and population genetic differentiation in the ant Formica selysi. Evolution 58(5):1064–1072. doi:10.1554/03-351

    Article  PubMed  Google Scholar 

  • Clémencet J, Viginier B, Doums C (2005) Hierarchical analysis of population genetic structure in the monogynous ant Cataglyphis cursor using microsatellite and mitochondrial DNA markers. Mol Ecol 14(12):3735–3744. doi:10.1111/j.1365-294X.2005.02706.x

    Article  PubMed  Google Scholar 

  • Clement M (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1659. doi:10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the hymenoptera. Trends Ecol Evol 10(7):281–286. doi:10.1016/0169-5347(95)90011-X

    Article  CAS  PubMed  Google Scholar 

  • Crist TO (2009) Biodiversity, species interactions, and functional roles of ants (Hymenoptera: Formicidae) in fragmented landscapes: a review. Myrmecol News 12:3–13

    Google Scholar 

  • Cronin AL, Molet M, Doums C, Monnin T, Peeters C (2013) Recurrent evolution of dependent colony foundation across eusocial insects. Annu Rev Entomol 58(1):37–55. doi:10.1146/annurev-ento-120811-153643

    Article  CAS  PubMed  Google Scholar 

  • Cruaud A, Jabbour-Zahab R, Genson G, Ungricht S, Rasplus J-Y (2012) Testing the emergence of New Caledonia: fig wasp mutualism as a case study and a review of evidence. PLoS ONE. doi:10.1371/journal.pone.0030941

    Google Scholar 

  • Debout G, Schatz B, Elias M, McKey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. Biol J Linn Soc 90(2):319–348. doi:10.1111/j.1095-8312.2007.00728.x

    Article  Google Scholar 

  • del Toro I, Ribbons RR, Pelini SL (2012) The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol News 17:133–146

    Google Scholar 

  • Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  CAS  PubMed  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142(8):1560–1569. doi:10.1016/j.biocon.2008.11.016

    Article  Google Scholar 

  • Doums C, Cabrera H, Peeters C (2002) Population genetic structure and male-biased dispersal in the queenless ant Diacamma cyaneiventre. Mol Ecol 11(11):2251–2264. doi:10.1046/j.1365-294X.2002.01619.x

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M (2012) Geneious v5. 6. Created by Biomatters. http://www.geneious.com. Accessed 10 Dec 2013

  • Espeland M, Johanson KA (2010) The diversity and radiation of the largest monophyletic animal group on New Caledonia (Trichoptera: Ecnomidae: Agmina). J Evol Biol 23(10):2112–2122. doi:10.1111/j.1420-9101.2010.02072.x

    Article  CAS  PubMed  Google Scholar 

  • Fabres G, Brown WL (1978) The recent introduction of the pest ant Wasmannia auropunctata into New Caledonia. Aust J Entomol 17(2):139–142. doi:10.1111/j.1440-6055.1978.tb02220.x

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • FAO (2011) State of the world’s forests. Food and Agriculture Organization of the United Nations, Rome

  • Folgarait PJ (1998a) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7(9):1221–1244. doi:10.1023/a:1008891901953

    Article  Google Scholar 

  • Folgarait PJ (1998b) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7(9):1221–1244. doi:10.1023/a:1008891901953

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140. doi:10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  • Gadagkar R, Chandrashekara K, Chandran S, Bhagavan S (1993) Serial polygyny in the primitively eusocial wasp Ropalidia marginata: implications for the evolution of sociality. In: Queen number and sociality in insects, pp 189–214

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486

    Google Scholar 

  • Gyllenstrand N, Seppä P (2003) Conservation genetics of the wood ant, Formica lugubris, in a fragmented landscape. Mol Ecol 12(11):2931–2940. doi:10.1046/j.1365-294X.2003.01975.x

    Article  CAS  PubMed  Google Scholar 

  • Halekoh U, Hojsgaard S (2014) Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R Package pbkrtest. J Stat Softw 59:1–32

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour: II. J Theor Biol 7(1):17–52. doi:10.1016/0022-5193(64)90039-6

    Article  CAS  PubMed  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi:10.1126/science.1244693

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620

    Article  Google Scholar 

  • Henle K, Davies K, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13(1):207–251. doi:10.1023/B:BIOC.0000004319.91643.9e

    Article  Google Scholar 

  • Holzer B, Keller L, Chapuisat M (2009) Genetic clusters and sex-biased gene flow in a unicolonial Formica ant. BMC Evol Biol 9(1):69. doi:10.1186/1471-2148-9-69

    Article  PubMed  PubMed Central  Google Scholar 

  • Hope G, Pask J (1998) Tropical vegetational change in the late Pleistocene of New Caledonia. Palaeogeogr Palaeoclimatol Palaeoecol 142(1–2):1–21. doi:10.1016/s0031-0182(97)00140-5

    Article  Google Scholar 

  • Hope G, O’Dea D, Southern W (1999) Holocene vegetation histories in the Western Pacific: alternative records of human impact. In: Galipaud J-C, Lilley I (eds) The Pacific from 5000 to 2000 BP: colonisation and transformations. IRD, Paris, pp 387–404

    Google Scholar 

  • Ibanez T, Borgniet L, Mangeas M, Gaucherel C, Géraux H, Hély C (2012) Rainforest and savanna landscape dynamics in New Caledonia: towards a mosaic of stable rainforest and savanna states? Aust Ecol 38(1):33–45. doi:10.1111/j.1442-9993.2012.02369.x

    Article  Google Scholar 

  • Jaffré T, Bouchet P, Veillon J-M (1998) Threatened plants of New Caledonia: Is the system of protected areas adequate? Biodivers Conserv 7:109–135

    Article  Google Scholar 

  • Janin A, Léna J-P, Joly P (2012) Habitat fragmentation affects movement behavior of migrating juvenile common toads. Behav Ecol Sociobiol 66(9):1351–1356

    Article  Google Scholar 

  • Johansson M, Primmer CR, MerilÄ J (2007) Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria). Mol Ecol 16(13):2693–2700. doi:10.1111/j.1365-294X.2007.03357.x

    Article  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10(3):551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  • Jourdan H (1999) Dynamique de la biodiversité de quelques écosystèmes terrestres néo-calédoniens sous l’effet de l’invasion de la fourmi peste Wasmannia auropunctata Ph.D, thesis, Université Paul Sabatier, Toulouse

  • Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insectes Soc 45(3):235–246. doi:10.1007/s000400050084

    Article  Google Scholar 

  • Kurata K, Jaffre T, Setoguchi H (2008) Genetic diversity and geographical structure of the pitcher plant Nepenthes vieillardii in New Caledonia: a chloroplast DNA haplotype analysis. Am J Bot 95(12):1632–1644. doi:10.3732/ajb.0800129

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1980) Genetic variation and phenotypic evolution during allopatric speciation. Am Nat 116(4):463–479

    Article  Google Scholar 

  • Le Breton J, Chazeau J, Jourdan H (2003) Immediate impacts of invasion by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter ant fauna in a New Caledonian rainforest. Aust Ecol 28:204–209

    Article  Google Scholar 

  • Le Breton J, Jourdan H, Chazeau J, Orivel J, Dejean A (2005) Niche opportunity and ant invasion: the case of Wasmannia auropunctata in a New Caledonian rain forest. J Trop Ecol 21(1):93–98. doi:10.1017/s0266467404002019

    Article  Google Scholar 

  • Levey DJ, Byrne MM (1993) Complex ant–plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology 74:1802–1812

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington, D.C.

    Google Scholar 

  • Lucky A (2011) Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae). Mol Phylogenet Evol 59(2):281–292. doi:10.1016/j.ympev.2011.03.004

    Article  PubMed  Google Scholar 

  • Lucky A, Ward PS (2010) Taxonomic revision of the ant genus Leptomyrmex Mayr (Hymenoptera: Formicidae). Zootaxa 2688:1–67

    Google Scholar 

  • Majer JD (1983) Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. Environ Manage 7:375–383

    Article  Google Scholar 

  • Mäki-Petäys H, Breen J (2007) Genetic vulnerability of a remnant ant population. Conserv Genet 8(2):427–435. doi:10.1007/s10592-006-9182-1

    Article  Google Scholar 

  • Mäki-Petäys H, Zakharov A, Viljakainen L, Corander J, Pamilo P (2005) Genetic changes associated to declining populations of Formica ants in fragmented forest landscape. Mol Ecol 14(3):733–742. doi:10.1111/j.1365-294X.2005.02444.x

    Article  PubMed  Google Scholar 

  • McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26(3):579–594. doi:10.1046/j.1365-2699.1999.00309.x

    Article  Google Scholar 

  • Méndez M, Tella JL, Godoy JA (2011) Restricted gene flow and genetic drift in recently fragmented populations of an endangered steppe bird. Biol Conserv 144(11):2615–2622. doi:10.1016/j.biocon.2011.07.011

    Article  Google Scholar 

  • Meyer ST, Leal IR, Tabarelli M, Wirth R (2011) Ecosystem engineering by leaf-cutting ants: nests of Atta cephalotes drastically alter forest structure and microclimate. Ecol Entomol 36(1):14–24. doi:10.1111/j.1365-2311.2010.01241.x

    Article  Google Scholar 

  • Mitrovich MJ, Matsuda T, Pease KH, Fisher RN (2010) Ants as a measure of effectiveness of habitat conservation planning in southern California. Conserv Biol 24(5):1239–1248. doi:10.1111/j.1523-1739.2010.01486.x

    Article  PubMed  Google Scholar 

  • Murienne J, Pellens R, Budinoff RB, Wheeler WC, Grandcolas P (2008) Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. Testing competing hypotheses of diversification. Cladistics 24:802–812. doi:10.1111/j.1096-0031.2008.00204.x

    Article  Google Scholar 

  • Murienne J, Edgecombe G, Giribet G (2011) Comparative phylogeography of the centipedes Cryptops pictus and C. niuensis (Chilopoda) in New Caledonia, Fiji and Vanuatu. Organ Divers Evol 11(1):61–74. doi:10.1007/s13127-011-0041-7

    Article  Google Scholar 

  • Nattier R, Robillard T, Desutter-Grandcolas L, Couloux A, Grandcolas P (2011) Older than New Caledonia emergence? A molecular phylogenetic study of the eneopterine crickets (Orthoptera: Grylloidea). J Biogeogr 38:2195–2209

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nguyen TTT, Murphy NP, Austin CM (2002) Amplification of multiple copies of mitochondrial Cytochrome b gene fragments in the Australian freshwater crayfish, Cherax destructor Clark (Parastacidae: Decapoda). Anim Genet 33(4):304–308. doi:10.1046/j.1365-2052.2002.00867.x

    Article  CAS  PubMed  Google Scholar 

  • Pamilo P, Crozier R (1997) Population biology of social insect conservation. Memoirs Museum Victoria 56:411–419

    Google Scholar 

  • Pamilo P, Gertsch P, Thoren P, Seppa P (1997) Molecular population genetics of social insects. Annu Rev Ecol Syst 28:1–25

    Article  Google Scholar 

  • Park S (2001) The Excel microsatellite toolkit. http://animalgenomics.ucd.ie/sdepark/ms-toolkit/. Accessed Aug 2007

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social hymenoptera. Annu Rev Entomol 46(1):601–630. doi:10.1146/annurev.ento.46.1.601

    Article  CAS  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43(2):258–275

    Article  Google Scholar 

  • Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8(8):285–288. doi:10.1016/0169-5347(93)90256-o

    Article  CAS  PubMed  Google Scholar 

  • Raven PH (1980) Research priorities in tropical biology. National Academy of Sciences Press, Washington, D.C.

    Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225

    Article  Google Scholar 

  • Ripperger SP, Tschapka M, Kalko EK, Rodriguez-Herrera B, Mayer F (2013) Life in a mosaic landscape: anthropogenic habitat fragmentation affects genetic population structure in a frugivorous bat species. Conserv Genet 14(5):925–934

    Article  Google Scholar 

  • Ross KG, Fletcher DJC (1986) Diploid male production—a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol 19(4):283–291. doi:10.1007/bf00300643

    Article  Google Scholar 

  • Ross KG, Shoemaker DD (1997) Nuclear and mitochondrial genetic structure in two social forms of the fire ant Solenopsis invicta: insights into transitions to an alternate social organization. Heredity 78(6):590–602

    Article  Google Scholar 

  • Rüppell O, Strätz M, Baier B, Heinze J (2003) Mitochondrial markers in the ant Leptothorax rugatulus reveal the population genetic consequences of female philopatry at different hierarchical levels. Mol Ecol 12(3):795–801. doi:10.1046/j.1365-294X.2003.01769.x

    Article  PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Seppä P (1994) Sociogenetic organization of the ants Myrmica ruginodis and Myrmica lobicornis: number, relatedness and longevity of reproducing individuals. J Evol Biol 7(1):71–95. doi:10.1046/j.1420-9101.1994.7010071.x

    Article  Google Scholar 

  • Stevenson J (2004) A late-Holocene record of human impact from the southwest coast of New Caledonia. Holocene 14(6):888–898. doi:10.1191/0959-683604hl755rp

    Article  Google Scholar 

  • Stevenson J, Hope G (2005) A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Quatern Res 64(3):372–383. doi:10.1016/j.yqres.2005.08.011

    Article  Google Scholar 

  • Stevenson J, Dodson JR, Prosser IP (2001) A late Quaternary record of environmental change and human impact from New Caledonia. Palaeogeogr Palaeoclimatol Palaeoecol 168(1–2):97–123. doi:10.1016/s0031-0182(00)00251-0

    Article  Google Scholar 

  • Sundström L, Keller L, Chapuisat M (2003) Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 57(7):1552–1561. doi:10.1111/j.0014-3820.2003.tb00363.x

    Article  PubMed  Google Scholar 

  • Taylor RW (1987) A checklist of the ants of Australia, New Caledonia and New Zealand (Hymenoptera: Formicidae). CSIRO Div Entomol Rep 41:1–92

    Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III: cladogram estimation. Genetics 132(2):619–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4):506–513

    CAS  PubMed  Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181(4):1579–1594. doi:10.1534/genetics.108.100214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber A, Kolb A (2011) Evolutionary consequences of habitat fragmentation: population size and density affect selection on inflorescence size in a perennial herb. Evol Ecol 25(2):417–428

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  • Wheeler WM (1915) The Australian honey-ants of the genus Leptomyrmex Mayr. Proc Am Acad Arts Sci 51(5):255–286

    Article  Google Scholar 

  • Wheeler WM (1934) A second revision of the ants of the genus Leptomyrmex Mayr. Bull Museum Comp Zool 77:67–118

    Google Scholar 

  • Zhu D, Chapuisat M, Pamilo P (2003) Highly variable social organisation of colonies in the ant Formica cinerea. Hereditas 139(1):7–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been partly funded by a competitive funding grant from Charles Darwin University to MB as part of her Ph.D. thesis, and by the Agence Nationale de la Recherche BDIV-07-008, project ‘Incendies Nouvelle Calédonie’. We gratefully acknowledge Julien Le Breton for his contribution with L. pallens samples from distant locations and Claudie Doums for her comments on an early version of the manuscript. We thank the New Caledonian Gohapin tribe who has allowed us to access and sample on their land, Ary Hoffmann for his guidance on experimental design and data analysis, and Jasmin Packer, Quentin Auriac, Barbara Pianu and Viviane Degret for their help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam D. Miller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berman, M., Austin, C.M., Burridge, C.P. et al. Social structure and landscape genetics of the endemic New Caledonian ant Leptomyrmex pallens Emery, 1883 (Hymenoptera: Formicidae: Dolichoderinae), in the context of fire-induced rainforest fragmentation. Conserv Genet 17, 931–947 (2016). https://doi.org/10.1007/s10592-016-0833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0833-6

Keywords

Navigation