Skip to main content

Advertisement

Log in

Extremely low genetic variation in endangered Tatra chamois and evidence for hybridization with an introduced Alpine population

Conservation Genetics Aims and scope Submit manuscript

Abstract

The Tatra chamois (Rupicapra rupicapra tatrica) is an endangered endemic subspecies living exclusively in the Tatra Mountains (Slovakia and southern Poland). In order to protect this evolutionary significant unit, a back-up population was established in the nearby Low Tatra Mts. in the 1970s. Before the subspecific status of Tatra chamois had been recognised, however, non-native Alpine chamois (R. r. rupicapra) were introduced to two adjacent mountain ranges. In order to assess their present conservation status, therefore, we undertook a thorough genetic analysis of all Slovak chamois populations (n = 363; 20 microsatellites, SRY gene, MHC class II DRB gene and mtDNA). We found low genetic variation and a high level of inbreeding in all populations, the least variable being the native Tatra chamois population (only one MHC allele), which we ascribe primarily to population bottlenecks. Introduced Alpine chamois showed greater variation, despite originating from few founders. One population, however, founded by just six individuals, also showed highest inbreeding. Male-biased introgressive hybridization between the back-up Low Tatra population and both introduced Alpine populations was detected using several approaches, with up to 19 % of the genome introgressed from Alpine chamois. Such hybridization can be viewed ambiguously as regards conservation in that, though it disrupts the integrity of the unique Tatra chamois genome in the back-up population it also improves its very low genetic variation and decreases inbreeding level, with no obvious signs of outbreeding depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622. doi:10.1016/S0169-5347(01)02290-X

    Article  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anonymous (ed) (1981) Current state and prospects of introduced chamois populations in Slovakia. Dom Techniky ČSVTS, Banská Bystrica. (in Slovak)

  • Arlettaz R, Patthey P, Baltic M, Leu T, Schaub M, Palme R, Jenni-Eiermann S (2007) Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc R Soc B 274:1219–1224. doi:10.1098/rspb.2006.0434

    Article  PubMed Central  PubMed  Google Scholar 

  • Aulagnier S, Giannatos G, Herrero J (2008) Rupicapra rupicapra. The IUCN Red List of Threatened Species. Version 2014.1. http://www.iucnredlist.org/details/39255/0. Accessed 07 July 2014

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257. doi:10.1111/j.1365-294X.2005.02751.x

    Article  CAS  PubMed  Google Scholar 

  • Bačkor P (2008) Migrations of chamois (Rupicapra rupicapra Linnaeus 1758) in Slovakia. Nat Carp XLIX:195-204. (in Slovak with English summary)

  • Bačkor P, Urban P (2009) The Tatra chamois in the National Park Nízke Tatry Mts. Folia Venat 38–39:47–64 (in Slovak with English summary)

    Google Scholar 

  • Bačkor P, Velič E (2008) Restitution Tatra chamois (Rupicapra rupicapra tatrica Blahout 1971) to the Nízke Tatry Mts (Central Slovakia). Nat Conserv 65:17–25

    Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Blahout M (1972) Zur Taxonomie der Population von Rupicapra rupicapra (Linné, 1785) in der Hohen Tatra. Zoologické listy 21:115–132 (in German with English summary)

    Google Scholar 

  • Bryja J, Galan M, Charbonnel N, Cosson J-F (2005) Analysis of major histocompatibility complex class II gene in water voles using capillary electrophoresis-single stranded conformation polymorphism. Mol Ecol Notes 5:173–176. doi:10.1111/j.1471-8286.2004.00855.x

    Article  CAS  Google Scholar 

  • Buzan EV, Bryja J, Zemanová B, Kryštufek B (2013) Population genetics of chamois in the contact zone between the Alps and the Dinaric Mountains: uncovering the role of habitat fragmentation and past management. Conserv Genet 14:401–412. doi:10.1007/s10592-013-0469-8

    Article  Google Scholar 

  • Cavallero S, Marco I, Lavín S, D’Amelio S, López-Olvera JR (2012) Polymorphisms at MHC class II DRB1 exon 2 locus in Pyrenean chamois (Rupicapra pyrenaica pyrenaica). Infect Genet Evol 12:1020–1026. doi:10.1016/j.meegid.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  • Chovancová B (2008) Tatra chamois (Rupicapra rupicapra tatrica Blahout 1972)—research and protection. In Koreň M (ed) Sixty years of the Tatra National Park: materials to the conference on the 60th anniversary of the Tatra National Park declaration. Štrbské Pleso, 18–19 December 2008, pp. 105–126. (in Slovak)

  • Čížková D, de Bellocq JG, Baird SJE, Piálek J, Bryja J (2011) Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations. Heredity 106:727–740. doi:10.1038/hdy.2010.112

    Article  PubMed Central  PubMed  Google Scholar 

  • Corander J, Marttinen P, Sirén J, Tang J (2008a) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9:539. doi:10.1186/1471-2105-9-539

    Article  Google Scholar 

  • Corander J, Sirén J, Arjas E (2008b) Bayesian spatial modeling of genetic population structure. Comput Stat 23:111–129. doi:10.1007/s00180-007-0072-x

    Article  Google Scholar 

  • Corlatti L, Lorenzini R, Lovari S (2011) The conservation of the chamois Rupicapra spp. Mamm Rev 41:163–174. doi:10.1111/j.1365-2907.2011.00187.x

    Article  Google Scholar 

  • Crestanello B, Pecchioli E, Vernesi C, Mona S, Martínková N, Janiga M, Hauffe HC, Bertorelle G (2009) The genetic impact of translocations and habitat fragmentation in chamois (Rupicapra) spp. J Hered 100:691–708. doi:10.1093/jhered/esp053

    Article  CAS  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (N e) from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  • Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14:1154–1166

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Mazumdar S, Naidoo R, Thapa GJ, Thapa K (2012) Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Conserv 150:129–135. doi:10.1016/j.biocon.2012.03.001

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi:10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475. doi:10.1111/j.1523-1739.2011.01662.x

    Article  PubMed  Google Scholar 

  • Garner A, Rachlow JL, Hicks JF (2005) Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 19:1215–1221. doi:10.1111/j.1523-1739.2005.00105.x

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi:10.1046/j.1365-294X.2001.01190.x

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Updated from Goudet (1995). Accessed 15 July 2014

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162. doi:10.1016/S0003-3472(80)80103-5

    Article  Google Scholar 

  • Hájková A (2011) Neutral genetic variation and structure of chamois populations in Slovakia. Diploma thesis, Charles University in Prague. (in Slovak with English summary, available at https://is.cuni.cz/webapps/zzp/detail/51053/)

  • Hansen MM, Olivieri I, Waller DM, Nielsen EE, The GeM Working Group (2012) Monitoring adaptive genetic responses to environmental change. Mol Ecol 21:1311–1329. doi:10.1111/j.1365-294X.2011.05463.x

    Article  PubMed  Google Scholar 

  • Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618. doi:10.1111/mec.12415

    Article  PubMed  Google Scholar 

  • Hurta V (2009) Distribution range and habitat use of Alpine chamois in Veľká Fatra Mts. Diploma thesis, University of Matej Bel, Banská Bystrica. (in Slovak with English summary)

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Janiga M, Zámečníková H (2002) Zoological characteristics of the historical data on chamois (Rupicapra rupicapra tatrica Blahout, 1971) as a base for the evaluation of their current abundance in the Tatra Mountains. In: Janiga M, Švajda J (eds) Chamois Protection. TANAP—Tatranská Štrba, NAPANT—Banská Bystrica, IHAB—Tatranská Javorina, pp. 99–182. (in Slovak with English summary)

  • Jurdíková N (2000) The decline of the Tatra chamois. Caprinae Newsletter of the IUCN/SSC Caprinae Specialist Group, December 2000:4–6

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi:10.1016/S0169-5347(02)02489-8

    Article  Google Scholar 

  • Koreň M, Radúch J, Chovancová B, Šturcel M, Kováč J, Gašinec I, Ksiažek J, Vančura V, Hummel M, Ondruš S (2001) Action plan for Tatra chamois for years 2001–2005. Tatranská Lomnica. (in Slovak)

  • Kováč J (2002) The history of the care and protection of the Tatra Chamois (Rupicapra rupicapra tatrica Blahout, 1971) in TANAP. In: Janiga M, Švajda S (eds) Chamois Protection. TANAP—Tatranská Štrba, NAPANT—Banská Bystrica, IHAB—Tatranská Javorina, pp. 197–204. (in Slovak with English summary)

  • Loison A, Jullien J-M, Menaut P (1999) Subpopulation structure and dispersal in two populations of chamois. J Mammal 80:620–632

    Article  Google Scholar 

  • Mannen H, Nagata Y, Tsuji S (2001) Mitochondrial DNA reveal that domestic goat (Capra hircus) are genetically affected by two subspecies of bezoar (Capra aegagurus). Biochem Genet 39:145–154. doi:10.1023/A:1010266207735

    Article  CAS  PubMed  Google Scholar 

  • Martínková N, Zemanová B, Kranz A, Giménez MD, Hájková P (2012) Chamois introductions to Central Europe and New Zealand. Folia Zool 61:239–245

    Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed Central  PubMed  Google Scholar 

  • Mona S, Crestanello B, Bankhead-Dronnet S, Pecchioli E, Ingrosso S, D’Amelio S, Rossi L, Meneguz PG, Bertorelle G (2008) Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Mol Ecol 17:4053–4067. doi:10.1111/j.1365-294X.2008.03892.x

    Article  CAS  PubMed  Google Scholar 

  • Morin PA, Chambers KE, Boesch C, Vigilant L (2001) Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol Ecol 10:1835–1844. doi:10.1046/j.0962-1083.2001.01308.x

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EE, Bach LA, Kotlicki P (2006) HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973. doi:10.1111/j.1471-8286.2006.01433.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pérez T, Albornoz J, Domínguez A (2002) Phylogeography of chamois (Rupicapra spp.) inferred from microsatellites. Mol Phylogenet Evol 25:524–534. doi:10.1016/S1055-7903(02)00296-8

    Article  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503. doi:10.1093/jhered/90.4.502

    Article  Google Scholar 

  • Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544. doi:10.1016/j.biocon.2009.07.026

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109. doi:10.1146/annurev.ecolsys.27.1.83

    Article  Google Scholar 

  • Rodríguez F, Hammer S, Pérez T, Suchentrunk F, Lorenzini R, Michallet J, Martinkova N, Albornoz J, Domínguez A (2009) Cytochrome b phylogeography of chamois (Rupicapra spp.). Population contractions, expansions and hybridizations governed the diversification of the genus. J Hered 100:47–55. doi:10.1093/jhered/esn074

    Article  PubMed  Google Scholar 

  • Rodríguez F, Pérez T, Hammer SE, Albornoz J, Domínguez A (2010) Integrating phylogeographic patterns of microsatellite and mtDNA divergence to infer the evolutionary history of chamois (genus Rupicapra). BMC Evol Biol 10:222. doi:10.1186/1471-2148-10-222

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rossi L, Fraquelli C, Vesco U, Permunian R, Sommavilla GM, Carmignola G, Da Pozzo R, Meneguz PG (2007) Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps, Italy. Eur J Wildl Res 53:131–141. doi:10.1007/s10344-006-0067-x

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359

    Article  CAS  PubMed  Google Scholar 

  • Schaschl H, Goodman SJ, Suchentrunk F (2004) Sequence analysis of the MHC class II DRB alleles in Alpine chamois (Rupicapra r. rupicapra). Dev Comp Immunol 28:265–277. doi:10.1016/j.dci.2003.08.003

    Article  CAS  PubMed  Google Scholar 

  • Schaschl H, Suchentrunk F, Hammer S, Goodman SJ (2005) Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.). Immunogenetics 57:108–115. doi:10.1007/s00251-005-0784-4

    Article  CAS  PubMed  Google Scholar 

  • Schaschl H, Suchentrunk F, Morris DL, Ben Slimen H, Smith S, Arnold W (2012) Sex-specific selection for MHC variability in Alpine chamois. BMC Evol Biol 12:20. doi:10.1186/1471-2148-12-20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seddon JM, Ellegren H (2004) A temporal analysis shows major histocompatibility complex loci in the Scandinavian wolf population are consistent with neutral evolution. Proc R Soc B 271:2283–2291. doi:10.1098/rspb.2004.2869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shafer ABA, Fan CW, Côté SD, Coltman DW (2012) Lack of) genetic diversity in immune genes predates glacial isolation in the North American mountain goat (Oreamnos americanus. J Hered 103:371–379. doi:10.1093/jhered/esr138

    Article  CAS  PubMed  Google Scholar 

  • Sindičić M, Polanc P, Gomerčić T, Jelenčič M, Huber Đ, Trontelj P, Skrbinšek T (2013) Genetic data confirm critical status of the reintroduced Dinaric population of Eurasian lynx. Conserv Genet 14:1009–1018. doi:10.1007/s10592-013-0491-x

    Article  Google Scholar 

  • Skrbinšek T, Jelenčič M, Waits L, Kos I, Jerina K, Trontelj P (2012) Monitoring the effective population size of a brown bear (Ursus arctos) population using new single-sample approaches. Mol Ecol 21:862–875. doi:10.1111/j.1365-294X.2011.05423.x

    Article  PubMed  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264. doi:10.1073/pnas.0403809101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B 277:979–988. doi:10.1098/rspb.2009.2084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc B 64:479–498. doi:10.1111/1467-9868.00346

    Article  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194. doi:10.1093/nar/24.16.3189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. doi:10.1046/j.1471-8286.2002.00228.x-i2

    Article  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res (Camb) 89:135–153. doi:10.1017/S0016672307008798

    Article  CAS  Google Scholar 

  • Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145. doi:10.1111/j.1755-0998.2010.02885.x

    Article  PubMed  Google Scholar 

  • Wang J (2014) Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods. J Evol Biol 27:518–530. doi:10.1111/jeb.12315

    Article  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. doi:10.1007/s10592-005-9100-y

    Article  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3:244–262. doi:10.1111/j.1752-4571.2009.00104.x

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769-U603. doi: 10.1534/genetics.114.164822

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Zemanová B, Hájková P, Wandeler P, Bryja J et al. Use of real-time PCR for detection of factors influencing PCR success and genotyping error rates in faecal DNA analysis of a mountain ungulate. In preparation

  • Zemanová B, Hájková P, Bryja J, Zima J Jr, Hájková A, Zima J (2011) Development of multiplex microsatellite sets for noninvasive population genetic study of the endangered Tatra chamois. Folia Zool 60:70–80

    Google Scholar 

  • Zima J, Kožená I, Hubálek Z (1990) Non-metrical variation and divergence between autochthonous and introduced populations of chamois (Rupicapra rupicapra). Folia Zool 39:237–248 http://spravatanap.sk/web/index.php/11-aktualne/282-jesenne-scitanie-kamzikov. Accessed 16 January 2015

Download references

Acknowledgments

We appreciate the help of our co-workers, including Peter Bačkor, Milan Ballo, Mária Boďová, Miroslav Brezovský, Barbara Chovancová, Jozef Kormančík, Juraj Ksiažek, Miroslav Lehocký, Vladimír Mucha, Stanislav Ondruš and Ľudovít Remeník, who provided tissue samples, collected faecal samples or provided information on Slovak chamois populations; and Andrea Hájková, Pavla Křížová, Hana Konvičková, Radka Poláková and Jan Zima jr., who helped with laboratory analysis. We also thank Jozef Kormančík for preparation of the distribution figure; Stuart J. E. Baird, Bruce Rannala, Tomaž Skrbinšek and Martin Straka for useful methodological suggestions and help with computational procedures. We further thank two anonymous reviewers for valuable comments on an earlier draft of the manuscript and Kevin Roche and Jan Roleček for linguistic improvements. Bioinformatics analysis was conducted at the computation cluster at the Institute of Vertebrate Biology of the Czech Academy of Sciences in Brno. This research was financially supported through Grant no. IAA600930609 of the Grant Agency of the Czech Academy of Sciences and through institutional support RVO: 68081766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Zemanová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 604 kb)

Supplementary material 2 (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemanová, B., Hájková, P., Hájek, B. et al. Extremely low genetic variation in endangered Tatra chamois and evidence for hybridization with an introduced Alpine population. Conserv Genet 16, 729–741 (2015). https://doi.org/10.1007/s10592-015-0696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0696-2

Keywords

Navigation