Skip to main content
Log in

Genetic structure of a Neotropical sedentary fish revealed by AFLP, microsatellite and mtDNA markers: a case study

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Although sedentary fish populations are potentially more susceptible to loss of genetic diversity than migratory fish, our knowledge of the genetic structures of Neotropical fish populations is mostly limited to large and/or migratory species. Geophagus brasiliensis is a Neotropical fish that exhibits sedentary habits and parental care, and therefore provides a good model for a population genetic study of a non-migratory species. We used microsatellite, AFLP and mtDNA (D-loop) analysis on a population of G. brasiliensis extending along 250 km of a Neotropical river and one of its tributaries. The results showed that this species has low levels of genetic diversity by comparison with other Neotropical species. The three molecular markers used revealed a common pattern of genetic structure consisting of three groups in the samples examined, with distinguishing values ranging from low (<0.05) to very high (>0.25). The results suggest a partial restriction of gene flow between populations along certain stretches of river. In general, our results indicated that even over short stretches, species genetic diversity is unevenly distributed throughout the basin, a feature that should be taken into account in future management and conservation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelha MCF, Goulart E (2004) Oportunismo trófico de Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae) no reservatório de Capivari, Estado do Paraná, Brasil. Acta Sci Biol Sci 26:37–45

    Article  Google Scholar 

  • Abreu MM, Pereira LHG, Vila VB, Foresti F, Oliveira C (2009) Genetic variability of two populations of Pseudoplatystoma reticulatum from the Upper Paraguay River Basin. Braz J Biol 69:681–689

    Article  Google Scholar 

  • Adamson EAS, Hurwood DA, Mather PB (2012) Insights into historical drainage evolution based on the phylogeography of the chevron snakehead fish (Channa striata) in the Mekong Basin. Freshw Biol 57:2211–2229

    Article  Google Scholar 

  • Agostinho AA, Gomes LC, Fernandes DR, Suzuki HI, Júlio HF Jr (2003) Migratory fishes of the upper Paraná River Basin, Brazil. In: Carolsfeld J, Harvey B, Ross C, Baer A (eds) Migratory fishes of South America: biology, fisheries and conservation status. World Fisheries Trust/Word Bank/International Development Research Centre, Washington DC, pp 19–98

    Google Scholar 

  • Agostinho AA, Thomaz SM, Gomes LC (2005) Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 19:646–652

    Article  Google Scholar 

  • Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations, 2nd edn. Wiley Blackwell Publishing, Oxford

    Google Scholar 

  • Almeida FS, Fungaro MHP, Sodré LMK (2001) RAPD and isoenzyme analysis of genetic variability in three allied species of catfish (Siluriformes: Pimelodidae) from the Tibagi River, Brazil. J Zool (Lond) 253:113–120

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Araújo FG, Santos LN (2001) Distribution of fish assemblages in Lajes reservoir, Rio de Janeiro, Brazil. Braz J Biol 61:563–576

    Article  PubMed  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Ayres M, Ayres Júnior M, Ayres DL, Santos AS (2007) BioEstat 5.0: Aplicações estatísticas nas áreas das Ciências Biológicas e Médicas, Sociedade Civil Mamirauá, Belém

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Calcagnotto D, DeSalle R (2009) Population genetic structuring in pacu (Piaractus mesopotamicus) across the Paraná-Paraguay basin: evidence from microsatellites. Neotrop Ichthyol 7:607–616

    Article  Google Scholar 

  • Carlsson J, Nilsson J (2000) Population genetic structure of brown trout (Salmo trutta L.) within a northern boreal forest stream. Hereditas 132:173–181

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Olsen HK, Nilsson J, Overli O, Stabell OB (1999) Microsatellites reveal fine-scale genetic structure in stream-living brown trout. J Fish Biol 55:1290–1303

    Article  CAS  Google Scholar 

  • Castro RMC, Casatti L, Santos HF, Ferreira KM, Ribeiro AC, Benine RC, Dardis GZP, Melo ALA, Stopiglia R, Abreu TX, Bockmann FA, Carvalho M, Gibran FZ, Lima FTC (2003) Estrutura e composição da ictiofauna de riachos do Rio Paranapanema, sudeste do Brasil. Biota Neotrop 3:1–31

    Article  Google Scholar 

  • Castro RMC, Casatti L, Santos HF, Melo ALA, Martins LSF, Ferreira KM, Gibran FZ, Benine RC, Carvalho M, Ribeiro AC, Abreu TX, Bockmann FA, Pelição GZ, Stopiglia R, Langeani F (2004) Estrutura e composição da ictiofauna de riachos da bacia do Rio Grande, no Estado de São Paulo, Sudeste do Brasil. Biota Neotrop 4:1–39

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Coelho ASG (2001) Software: Dboot—Avaliação de dendrogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap, versão 3.0. Universidade Federal de Goiás, Goiânia

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa ADA, Ferreira DG, Silva WF, Zanatta AS, Shibatta AO, Galindo BA (2013) Fishes (Osteichthyes: Actinopterygii) from the Penacho stream, upper Paraná River basin, Paraná State, Brazil. Check List 9:519–523

    Google Scholar 

  • Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Crawford N (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using BOTTLENECK 1.2. 02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11:1043–1049

    Article  Google Scholar 

  • Cronin MA, Spearman WJ, Wilmot RL, Patton JC (1993) Mitochondrial DNA variation in chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) detected by restriction enzyme analysis of polymerase chain reaction (PCR) products. Can J Fish Aquat Sci 50:708–715

    Article  CAS  Google Scholar 

  • David L, Rajasekaran P, Fang J, Hillel J, Lavi U (2001) Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers. MGG Mol Genet Genomics 266:353–362

    Article  CAS  Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • Earl DA, VonHoldt BM (2011) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Esteves KE, Aranha JMR (1999) Ecologia trófica de peixes de riachos. In: Caramaschi EP, Mazzoni R, Bizerril CRSF, Peres-Neto PR (eds) Ecologia de Peixes de Riachos: Estado Atual e Perspectivas. Oecologia Brasiliensis, Rio de Janeiro, pp 157–182

    Google Scholar 

  • Estoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and experimental considerations. In: Carvallo G (ed) Advances in molecular ecology. NATO Press, Amsterdam, pp 55–86

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Excoffier LG, Laval A, Scheneider S (2005) Arlequin ver 3.1: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Ferreira DG, Galindo BA, Alves AN, Almeida FS, Ruas CF, Sofia SH (2013) Development and characterization of 14 microsatellite loci in the Neotropical fish Geophagus brasiliensis (Perciformes, Cichlidae). J Fish Biol 83:1430–1438

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freeland JR (2005) Molecular ecology. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Fu YX (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcez R, Calcagnotto D, Almeida-Toledo LF (2011) Population structure of the migratory fish Prochilodus lineatus (Characiformes) from Rio Grande basin (Brazil), an area fragmented by dams. Aquat Conserv Mar Freshw Ecosyst 21:268–275

    Article  Google Scholar 

  • Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Ind 11:1507–1516

    Article  Google Scholar 

  • Goodwin NB, Balshine-Earn S, Reynolds JD (1998) Evolutionary transitions in parental care in cichlid fish. Proc R Soc Lond B Biol Sci 265:2265–2272

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. www.unil.ch/izea/softwares/fstat.html. Accessed 10 Sept 2012

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates Inc., Publishers, Sunderland

    Google Scholar 

  • Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes JM, Real KM, Marshall JC, Schmidt DJ (2012) Extreme genetic structure in a small-bodied freshwater fish, the purple spotted gudgeon, Mogurnda adspersa (Eleotridae). PLoS One 7(e40546):1–11

    Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kimura M, Weiss GH (1964) Stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kullander SO (2003) Family Cichlidae (Cichlids). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, pp 605–654

    Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Langen K, Schwarzer J, Kullmann H, Bakker TCM, Thunken T (2011) Microsatellite support for active inbreeding in a cichlid fish. Plos One 6:1–9

    Article  Google Scholar 

  • Lassala MDP, Renesto E (2007) Reproductive strategies and genetic variability in tropical freshwater fish. Genet Mol Biol 30:690–697

    Article  CAS  Google Scholar 

  • Leuzzi MSP, Almeida FSD, Orsi ML, Sodré LMK (2004) Analysis by RAPD of the genetic structure of Astyanax altiparanae (Pisces, Characiformes) in reservoirs on the Paranapanema River, Brazil. Genet Mol Biol 27:355–362

    Article  CAS  Google Scholar 

  • Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595:545–567

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe-Mcconnell RH (1991) Ecology of cichlids in South American and African waters, excluding the African Great Lakes. In: Keenleyside MHA (ed) Cichlid fishes behavior, ecology, and evolution. Chapman and Hall, London, pp 60–85

    Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Luiz EA, Agostinho AA, Gomes LC, Hahn NS (1998) Ecologia trófica de peixes em dois riachos da bacia do Rio Paraná. Rev Brasil Biol 58:273–285

    Google Scholar 

  • Mariette S, Chagné D, Lézier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479

    Article  CAS  PubMed  Google Scholar 

  • Martins C, Wasko AP, Oliveira C, Foresti F (2003) Mitochondrial DNA variation in wild populations of Leporinus elongatus from the Paraná River basin. Genet Mol Biol 26:33–38

    Article  CAS  Google Scholar 

  • Matoso DA, Martins C, Artoni RF, Galetti PM Jr (2010) Preliminary qualitative analysis on DNAmt in Astyanax fasciatus populations Cuvier, 1819 (Teleostei, Characidae) indicate population distinctiveness. Braz Arch Biol Technol 53:663–667

    Article  CAS  Google Scholar 

  • Matsumoto CK, Hilsdorf AWS (2009) Microsatellite variation and population genetic structure of a neotropical endangered Bryconinae species Brycon insignis Steindachner, 1877: implications for its conservation and sustainable management. Neotrop Ichthyol 7:395–402

    Article  Google Scholar 

  • Meffe GK, Vrigenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv Biol 2:157–169

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Menezes N, Weitzman SH, Oyakawa O, Lima FCT, Castro RMC, Weitzman MJ (2007) Peixes de água doce da bacia da Mata Atlântica. Lista preliminar de espécies e comentários sobre conservação de peixes de água doce Neotropicais. Museu de Zoologia, Universidade de São Paulo, São Paulo

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  CAS  PubMed  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA): a Windows program for the analysis of allozyme and molecular population genetic data, version 1.3. http://bioweb.usu.edu/mpmbio

  • Moeser AA, Bermingham E (2005) Isolation and characterization of eight microsatellite loci for the Neotropical freshwater catfish Pimelodella chagresi (Teleostei: Pimelodidae). Mol Ecol Notes 5:363–365

    Article  CAS  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Moysés CB, Almeida-Toledo LFD (2002) Restriction fragment length polymorphisms of mitochondrial DNA among five freshwater fish species of the genus Astyanax (Pisces, Characidae). Genet Mol Biol 25:401–407

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paiva SR, Dergam JA, Machado F (2006) Determining management units in southeastern Brazil: the case of Astyanax bimaculatus (Linnaeus, 1758) (Teleostei: Ostariophysi: Characidae). Hydrobiologia 560:393–404

    Article  CAS  Google Scholar 

  • Pereira LHG, Foresti F, Oliveira O (2009) Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behavior. Ecol Freshw Fish 18:215–225

    Article  Google Scholar 

  • Philippsen JS, Renesto E, Geahl AM, Artoni RF, Shibatta OA, Zawadzki CH (2009) Genetic variability in four samples of Neoplecostomus yapo (Teleostei: Loricariidae) from the Paranapanema basin, Brazil. Neotrop Ichthyol 7:25–30

    Article  Google Scholar 

  • Piorski NM, Sanches A, Carvalho-Costa LF, Hatanaka T, Carrillo-Avila M, Freitas PD, Galetti PM Jr (2008) Contribution of conservation genetics in assessing neotropical freshwater fish biodiversity. Braz J Biol 68:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond M, Rousset M (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reck M, Benício LM, Ruas EA, Rodrigues LA, Ruas PM, Ortiz MA, Talavera S, Urtubey E, Stuessy T, Weiss-Schneeweiss H et al (2011) Karyotype and AFLP data reveal the phylogenetic position of the Brazilian endemic Hypochaeris catharinensis (Asteraceae). Plant Syst Evol 296:231–243

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Santos MCF, Ruffino ML, Farias IF (2007) High levels of genetic variability and panmixia of the tambaqui Colossoma macropomum (Cuvier, 1816) in the main channel of the Amazon River. J Fish Biol 71:33–44

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:223–234

    Article  Google Scholar 

  • Shibatta AO, Silva-Souza AT (2008) Fish, Ribeirão do Feijão basin, São Carlos, São Paulo, Brazil. Checklist 4:75–78

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Sofia SH, Silva CR, Galindo BA, Almeida FS, Sodré LM, Martinez CB (2006) Population genetic structure of Astyanax scabripinnis (Teleostei, Characidae) from an urban stream. Hydrobiologia 553:245–254

    Article  CAS  Google Scholar 

  • Sofia SH, Galindo BA, Paula FM, Sodré LMK, Martinez CBR (2008) Genetic diversity of Hypostomus ancistroides (Teleostei, Loricariidae) from an urban stream. Genet Mol Biol 31:317–323

    Article  CAS  Google Scholar 

  • Smith WS, Petrere-Jr M, Barrela W (2003) The fish fauna in tropical rivers: The case of the Sorocaba river, SP, Brazil. Rev Biol Trop 51:769–782

  • Soulé ME, Simberloff D (1986) What do genetics and ecology tell us about the design of nature reserves? Biol. Conserv 35:19–40

    Article  Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29:344–358

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira TP, Pinto BCT, Terra BF, Estiliano EO, Gracia D, Araújo FG (2005) Diversidade das assembléias de peixes nas quatro unidades geográficas do rio Paraíba do Sul. Iheringia Ser Zoll 95:347–357

    Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. John Wiley and Sons Inc, Hoboken

    Book  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Togawa RC, Brigido MM (2003) Phph: web based tool for simple electropherogram quality analysis. In: 1st international conference on bioinformatics and computational biology, Ribeirão Preto

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley PF (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vos R, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vrijenhoek RC (1998) Conservation genetics of freshwater fish. J Fish Biol 53:394–412

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Wimberger PH (1992) Plasticity of fish body shape: the effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linn Soc 45:197–218

    Article  Google Scholar 

  • Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81:225–241

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. University of Chicago, Chicago

    Google Scholar 

  • Yeh FC, Yang R, Boyle TJ, Xiyan JM (2000) Pop Gene 32. Microsoft window-based freeware for population genetic analysis, v.1.32. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton

  • Zawadzki CH, Renesto E, Reis RE, Moura MO, Mateus RP (2005) Allozyme relationships in hypostomines (Teleostei: Loricariidae) from the Itaipu reservoir, Upper Rio Paraná basin, Brazil. Genetica 123:271–283

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Araucaria Foundation for financial support; to the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship awarded to D.G. Ferreira; to Dr Oscar Akio Shibatta (State University of Londrina) for his help in identifying the species studied, and to IBAMA (Brazilian Institute of Environment and Renewable Natural Resources)/ICMBio-System (Institute Chico Mendes—MMA) and IAP (Environmental Institute of Paraná) for permission to collect samples. The authors would also like to thank the two anonymous reviewers for their valuable comments aimed at improving the quality of this paper. Silvia H. Sofia is a research fellow at the Brazilian Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia H. Sofia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D.G., Galindo, B.A., Frantine-Silva, W. et al. Genetic structure of a Neotropical sedentary fish revealed by AFLP, microsatellite and mtDNA markers: a case study. Conserv Genet 16, 151–166 (2015). https://doi.org/10.1007/s10592-014-0648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0648-2

Keywords

Navigation