Skip to main content

Advertisement

Log in

Does recent habitat fragmentation affect the population genetics of a heathland specialist, Andrena fuscipes (Hymenoptera: Andrenidae)?

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation is believed to be a key threat to biodiversity as it decreases the probability of survival of populations, reduces gene flow among populations and increases the possibility of inbreeding and loss of genetic diversity within populations. Heathlands represent excellent systems to study fragmentation effects as the spatial and temporal course of fragmentation is well documented for these habitats. At the beginning of the nineteenth century, heathlands were widespread in northern Germany, but they became increasingly fragmented at the end of the nineteenth century until only few fragments had been left. As many insect species are strongly specialized on heathland habitats, they represent ideal study systems to test the genetic effects of such recent fragmentation processes. The solitary bee Andrena fuscipes is strongly specialized on heather (Calluna vulgaris) and, therefore, occurs exclusively in heathland habitats. The species is red-listed in Germany and other parts of Europe. Here, we present an analysis of the genetic structure of 12 populations of A. fuscipes using eight microsatellite loci. The populations showed little geographical structure and the degree of genetic differentiation was low. Compared to related bee species, inbreeding coefficients were relatively low and seem to be mainly affected by the bees’ solitary nesting behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assmann T, Janssen J (1999) The effects of habitat changes on the endangered ground beetle Carabus nitens (Coleoptera: Carabidae). J Insect Conserv 3:107–116

    Article  Google Scholar 

  • Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14:63–68

    Article  CAS  PubMed  Google Scholar 

  • Beveridge M, Simmons LW (2006) Panmixia: an example from Dawson’s burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini). Mol Ecol 15:951–957

    Article  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bohonak AJ (2002) IBD (Isolation by Distance): a program for analysis of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR (1993) Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet 52:922–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cane JH, Tepedino VJ (2001) Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences. Conserv Ecol 5:1

    Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman RE, Wang J, Bourke AFG (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. Mol Ecol 12:2801–2808

    Article  CAS  PubMed  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Mol Ecol 15:2833–2843

    Article  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for inferring recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Danforth BN, Shuqing J, Ballard LJ (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis (Hymenoptera: Andrenidae). J Kans Entomol Soc 76:221–235

    Google Scholar 

  • Dupont YL, Nielsen BO (2006) Species composition, feeding specificity and larval trophic level of flower-visiting insects in fragmented versus continuous heathlands in Denmark. Biol Conserv 131:475–485

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  CAS  PubMed  Google Scholar 

  • Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Exeler N, Kratochwil A, Hochkirch A (2008) Strong genetic exchange among populations of a specialist bee, Andrena vaga (Hymenoptera: Andrenidae). Conserv Genet 9:1233–1241

    Article  Google Scholar 

  • Exeler N, Kratochwil A, Hochkirch A (2009) Restoration of riverine inland sand dunes: implications for the conservation of wild bees (Apoidea). J Appl Ecol 46:1097–1105

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Felsenstein J (1993) Phylip (Phylogeny Inference Package) v3.57c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Fitzpatrick U, Murray TE, Byrne A, Paxton RJ, Brown MJF (2006) Regional red list of Irish bees. Report to National Parks and Wildlife Service (Ireland) and Environment and Heritage Service (N. Ireland). http://www.npws.ie/en/media/Media,4860,en.pdf. Accessed Nov 2006

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 45:742–752

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Gröning J, Krause S, Hochkirch A (2007) Habitat preferences of an endangered insect species, Cepero’s ground-hopper (Tetrix ceperoi). Ecol Res 22:767–773

    Article  Google Scholar 

  • Heckenroth H (1985) Atlas der Brutvögel Niedersachsens 1980. Naturschutz Landschaftspfl Niedersachs 14:1–428

    Google Scholar 

  • Hochkirch A, Damerau M (2009) Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol J Linn Soc 97:118–127

    Article  Google Scholar 

  • Hochkirch A, Witzenberger K, Teerling A, Niemeyer F (2007) Translocation of an endangered insect species, the field cricket (Gryllus campestris Linnaeus, 1758) in northern Germany. Biodivers Conserv 16:3597–3607

    Article  Google Scholar 

  • Hochkirch A, Gärtner A-C, Brandt T (2008) Effects of management of degraded inland dunes on the endangered heath grasshopper, Chorthippus vagans (Orthoptera: Acrididae). Bull Entomol Res 98:449–456

    Article  CAS  PubMed  Google Scholar 

  • Kelley ST, Farrell BD, Mitton JB (2000) Effects of specialization on genetic differentiation in sister species of bark beetles. J Hered 84:218–227

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Kitahara M, Fujii K (1994) Biodiversity and community structure of temperate butterfly species within a gradient of human disturbance: an analysis based on the concept of generalist vs. specialist strategies. Res Popul Ecol 36:187–199

    Article  Google Scholar 

  • Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302

    Article  Google Scholar 

  • Minch E (1997) Microsat, version 1.5b. Stanford University Medical Centre, Stanford, CA

    Google Scholar 

  • Mohra C, Fellendorf M, Segelbacher G, Paxton RJ (2000) Dinucleotide microsatellite loci for Andrena vaga and other andrenid bees from non-enriched and CT-enriched libraries. Mol Ecol 9:2189–2191

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Owen R (2001) Population genetic aspects of pollinator decline. Conserv Ecol 5. http://www.consecol.org/vol5/iss1/art4/

  • Packer L, Zayed A, Grixti JC, Ruz L, Owen RE, Vivallo F, Toro H (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conserv Biol 19:195–202

    Article  Google Scholar 

  • Paxton RJ (2005) Male mating behaviour and mating systems of bees: an overview. Apidologie 36:145–156

    Article  Google Scholar 

  • Paxton RJ, Thorén PA, Tengö J, Estoup A, Pamilo P (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol Ecol 5:511–519

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peeters TMJ, Reemer M (2003) Bedreigde en verdwenen bijen in Nederland (Apidae). European Invertebrate Survey, Nederland, Leiden

    Google Scholar 

  • Peterson MA, Denno R (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152:428–446

    Article  CAS  PubMed  Google Scholar 

  • Petit E, Balloux F, Goudet J (2001) Sex biased dispersal in a migratory bat: a characterization using sex-specific demographic parameters. Evolution 55:635–640

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. http://www.R-project.org

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung 2006. Schriftenreihe Naturschutz und Biologische Vielfalt, vol 34. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Sallé A, Arthofer W, Lieutier F, Stauffer C, Kerdelhué C (2007) Phylogeography of a host-specific insect: genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host. Biol J Linn Soc 90:239–246

    Article  Google Scholar 

  • Sedláková I, Chytrý M (1999) Regeneration patterns in a Central European dry heathland: effects of burning, sod-cutting and cutting. Plant Ecol 143:77–87

    Article  Google Scholar 

  • Stahlhut JK, Cowan DP (2004) Inbreeding in a natural population of Euodynerus foraminatus (Hymenoptera: Vespidae), a solitary wasp with single-locus complementary sex determination. Mol Ecol 13:631–638

    Article  PubMed  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  CAS  PubMed  Google Scholar 

  • Stow A, Silberbauer L, Beattie AJ, Briscoe DA (2007) Fine-scale genetic structure and fire-created habitat patchiness in the Australian allodapine bee, Exoneura nigrescens (Hymenoptera: Apidae). J Hered 98:60–66

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T (1992) Fragmentation of Phragmites habitats, minimum viable population size, habitat suitability, and local extinction of moths, midges, flies, aphids, and birds. Conserv Biol 6:530–536

    Article  Google Scholar 

  • Tscharntke T, Brandl R (2004) Plant–insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430

    Article  CAS  PubMed  Google Scholar 

  • Usher MB (1992) Management and diversity of arthropods in Calluna heathland. Biodivers Conserv 1:63–79

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • von der Heide A, Metscher H (2003) Zur Bienen- und Wespenbesiedlung von Taldünen der Ems und anderen Trockenstandorten im Emsland (Hymenoptera; Aculeata). Drosera 1:95–130

    Google Scholar 

  • Webb NR (1989) Studies on the invertebrate fauna of fragmented heathland in Dorset, UK, and the implications for conservation. Biol Conserv 47:153–165

    Article  Google Scholar 

  • Westrich P (1989) Die Wildbienen Baden Württembergs. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Westrich P, Schwenninger HR, Dathe H, Riemann H, Saure C, Voith J, Weber K (1998) Rote Liste der Bienen (Hymenoptera, Apidae). In: Riecken U, Finck P, Raths U, Schröder E, Ssymank A (eds) Rote Liste gefährdeter Tiere Deutschlands, vol 55. Bundesamt für Naturschutz (Hrsg), Schriftenreihe Landschaftspflege und Naturschutz, pp 119–129

  • Widmer A, Schmid-Hempel P (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol Ecol 8:387–398

    Article  CAS  PubMed  Google Scholar 

  • Witzenberger KA, Hochkirch A (2008) Genetic consequences of animal translocations: a case study using the field cricket, Gryllus campestris L. Biol Conserv 141:3059–3068

    Article  Google Scholar 

  • Wright S (1951) The genetic structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Wuellner CT (1999) Nest site preference and success in a gregarious, ground nesting bee Dieunomia triangulifera. Ecol Entomol 24:471–479

    Article  Google Scholar 

  • Zayed A, Packer L, Grixti JC, Ruz L, Owen RE, Toro H (2005) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation. Conserv Genet 6:1017–1026

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Schanowski, C. Venne and S. Hameister for collecting material of A. fuscipes. We thank U. Coja for help in the laboratory. K. A. Witzenberger and T. Eggers gave helpful comments on a previous version of this manuscript. We also wish to thank R. Paxton for providing microsatellite primers and helpful comments. Financial support was provided by the German Federal Environmental Foundation (“Deutsche Bundesstiftung Umwelt”) and the Environmental Foundation of Weser-Ems (“Umweltstiftung Weser-Ems”). We thank the regional administrations for the permission to collect specimens of A. fuscipes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Exeler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exeler, N., Kratochwil, A. & Hochkirch, A. Does recent habitat fragmentation affect the population genetics of a heathland specialist, Andrena fuscipes (Hymenoptera: Andrenidae)?. Conserv Genet 11, 1679–1687 (2010). https://doi.org/10.1007/s10592-010-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0060-5

Keywords

Navigation