Skip to main content
Log in

Diffusion of nuclear and mitochondrial genes across a zone of secondary contact in the maritime shrew, Sorex maritimensis: implications for the conservation of a Canadian endemic mammal

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The maritime shrew, Sorex maritimensis, is a Canadian endemic species with a limited distribution in two provinces in eastern Canada. Phylogeographic analysis of mitochondrial DNA control region and cytochrome b sequences revealed two clades, one found in New Brunswick and the other primarily in Nova Scotia, Canada. We propose that these clades have come back into secondary contact following the Wisconsin glaciation via wetlands on the narrow Isthmus of Chigneto that connects these provinces. Despite evidence of an historic separation of maritime shrew subpopulations in Nova Scotia and New Brunswick, we conclude that shrews in these two regions should be considered a single evolutionary significant unit but separate, semi-isolated management units that should be recognized as such for conservation purposes. The susceptibility of this stenotopic species with limited dispersal capabilities raises concerns about its long-term persistence if climate-change induced habitat fragmentation increases. Maintenance of contiguous wetland habitats is needed to ensure connectivity and gene flow among populations of the maritime shrew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bannikova AA, Lavrenchenko LA, Kramerov DA (2005) Phylogenetic relationships between Afrotropical and Palaearctic Crocidura species inferred from inter-SINE-PCR. Biochem Syst Ecol 33:45–59. doi:10.1016/j.bse.2004.05.014

    Article  CAS  Google Scholar 

  • Borodulina OR, Kramerov DA (2001) Short interspersed elements (SINEs) from insectivores Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm Genome 12:779–786. doi:10.1007/s003350020029

    Article  PubMed  CAS  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 17:390–395

    Google Scholar 

  • Dawe KL (2005) Habitat associations and genetic diversity of the maritime shrew, Sorex maritimensis. MSc Thesis, Acadia University

  • Dubey S, Cosson J-F, Vohralik V, Krystufek B, Diker E, Vogel P (2007) Molecular evidence of Pleistocene bidirectional fauna exchange between Europe and the Near East: the case of the bicoloured shrew (Crocidura leucodon, Soricidae). J Evol Biol 20:1799–1808. doi:10.1111/j.1420-9101.2007.01382.x

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fumagalli L, Taberlet P, Stewart DT, Gielly L, Hausser J, Vogel P (1999) Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mtDNA sequence data. Mol Phylogenet Evol 11:222–235. doi:10.1006/mpev.1998.0568

    Article  PubMed  CAS  Google Scholar 

  • Gannon WL, Sikes RS, the Animal Care, Use Committee of the American Society of Mammalogists (2007) Guidelines of the American Society of mammalogists for the use of wild mammals in research. J Mammal 88:809–823. doi:10.1644/06-MAMM-F-185R1.1

    Article  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426. doi:10.1093/jhered/89.5.415

    Article  Google Scholar 

  • Herman TB, Scott FW (1992) Global change at the local level: assessing the vulnerability of vertebrate species to climatic warming. In: Willison JHM, Bondrup-Nielsen S, Drysdale C, Herman TB, Munro NWP, Pollock TL (eds) Science and the management of protected areas. Elsevier, New York, pp 353–367

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144. doi:10.1007/BF02515385

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX et al (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200. doi:10.1073/pnas.86.16.6196

    Article  PubMed  CAS  Google Scholar 

  • McCarthy C (1996) Chromas 1.45. School of Health Science. Griffith University, Southport, Queensland

    Google Scholar 

  • Mockford SW, Herman TB, Snyder M, Wright JM (2007) Conservation genetics of Blanding’s turtle and its application in the identification of evolutionarily significant units. Conserv Genet 8:209–218. doi:10.1007/s10592-006-9163-4

    Article  Google Scholar 

  • Moritz C (1994a) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411. doi:10.1111/j.1365-294X.1994.tb00080.x

    Article  CAS  Google Scholar 

  • Moritz C (1994b) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    Article  Google Scholar 

  • Nagorsen D (2004) Canada’s endemic mammals at risk: recent taxonomic advances and priorities for conservation. In: Hooper TD (ed) Proceedings of the Species at Risk 2004 Pathways to Recovery Conference March 2–6, 2004, Victoria, British Columbia. Species at Risk 2004 Pathways to Recovery Conference Organizing Committee, Victoria, British Columbia, p 2

  • Pearce JM (2006) Minding the gap: frequency of indels in mtDNA control region sequence data and influence on population genetic analysis. Mol Ecol 15:333–341. doi:10.1111/j.1365-294X.2005.02781.x

    Article  PubMed  CAS  Google Scholar 

  • Peltonen A, Hanski I (1991) Patterns of island occupancy explained by colonization and extinction rates in shrews. Ecology 72:1698–1708. doi:10.2307/1940969

    Article  Google Scholar 

  • Petersen SD, Stewart DT (2006) Biogeography and conservation genetics of southern flying squirrels, Glaucomys volans, from Nova Scotia. J Mammal 87:153–160. doi:10.1644/05-MAMM-A-062R1.1

    Article  Google Scholar 

  • Posada D (2007) version 1.2. available from http://darwin.uvigo.es

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Province of Nova Scotia (1994) Glaciation, deglaciation and sea-level changes. In: Natural History of Nova Scotia. Nova Scotia Museum of Natural History, vol 1. Halifax, Nova Scotia, pp 57–64

  • Rambaut A (1996) Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10. doi:10.1016/0169-5347(86)90059-5

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software package for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Shafer ABA, Stewart DT (2007) Phylogenetic relationships among Nearctic shrews of the genus Sorex (Insectivora, Soricidae) inferred from combined cytochrome b and inter-SINE fingerprint data using Bayesian analysis. Mol Phylogenet Evol 44:192–203. doi:10.1016/j.ympev.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  • Sipe TW, Browne RA (2004) Phylogeography of masked shrews (Sorex cinereus) and smoky shrews (Sorex fumeus) in the Southern Appalachians. J Mammal 85:875–885. doi:10.1644/214

    Article  Google Scholar 

  • Stewart DT, Baker AJ (1992) Genetic differentiation and biogeography of the masked shrew in Atlantic Canada. Can J Zool 70:106–114

    Article  Google Scholar 

  • Stewart DT, Baker AJ (1994) Patterns of sequence variation in the mitochondrial D-loop region of shrews. Mol Biol Evol 11:9–21

    PubMed  CAS  Google Scholar 

  • Stewart DT, Baker AJ (1997) A phylogeny of some taxa of masked shrews (Sorex cinereus) based on mitochondrial DNA D-loop sequences. J Mammal 78:361–376. doi:10.2307/1382890

    Article  Google Scholar 

  • Stewart DT, Perry ND, Fumagalli L (2002) The maritime shrew, Sorex maritimensis (Insectivora: Soricidae): a newly recognized Canadian endemic. Can J Zool 80:94–99. doi:10.1139/z01-207

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • van Zyll de Jong CG (1983a) A morphometric analysis of North American shrews of the Sorex arcticus group, with special consideration of the taxonomic status of S. a. maritimensis. Nat Can 110:373–378

    Google Scholar 

  • van Zyll de Jong CG (1983b) Handbook of Canadian Mammals. vol 1. Marsupials and Insectivores. National Museums of Canada, Ottawa

    Google Scholar 

  • Volobouev VT, Van Zyll De Jong CG (1988) The karyotype of Sorex arcticus maritimensis (Insectivora, Soricidae) and its systematic implications. Can J Zool 66:1968–1972

    Article  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference. The Johns Hopkins University Press, Baltimore

    Google Scholar 

Download references

Acknowledgements

We are grateful for in-kind support from Colin McKinnon of the Canadian Wildlife Service, Eric Tremblay of Kouchibouguac National Park, and Joe Kennedy of the New Brunswick Department of Natural Resources and Energy (Hampton). We also thank Margaret Wheaton and the many landowners for the use of their property. Julie Read, Patrick McCamphill, Owen Thompson, and Roxanne Struk provided great field and lab assistance and Sara Good-Avila offered helpful statistical advice. Funding for this project came from a Nova Scotia Museum Rare Species Grant, the Nova Scotia Habitat Conservation Fund, the New Brunswick Wildlife Trust Fund, and a National Sciences and Engineering Research Council of Canada Discovery Grant to DTS. KLD was supported by Acadia University Teaching Fellowships, the IUGB Wildlife Research Award, the Margaret McCarthy Research Scholarship, and the New Brunswick Museum Florence M. Christie Research Fellowship in Zoology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald T. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawe, K.L., Shafer, A.B.A., Herman, T.B. et al. Diffusion of nuclear and mitochondrial genes across a zone of secondary contact in the maritime shrew, Sorex maritimensis: implications for the conservation of a Canadian endemic mammal. Conserv Genet 10, 851–857 (2009). https://doi.org/10.1007/s10592-008-9645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9645-7

Keywords

Navigation