Skip to main content

Advertisement

Log in

Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future

Conservation Genetics Aims and scope Submit manuscript

Microsatellite DNA loci have emerged as the dominant genetic tool for addressing questions associated with genetic diversity in many wildlife species, including crocodilians. Despite their usefulness, their isolation and development can be costly, as well as labour intensive, limiting their wider use in many crocodilian species. In this study, we investigate the cross-species amplification success of 82 existing microsatellites previously isolated for the saltwater crocodile (Crocodylus porosus) in 18 non-target crocodilian species; Alligator sinensis, Caiman crocodylus, Caiman latirostris, Caiman yacare, Melanosuchus niger, Paleosuchus palpebrosus, Crocodylus acutus, Mecistops cataphractus, Crocodylus intermedius, Crocodylus johnstoni, Crocodylus mindorensis, Crocodylus moreletii, Crocodylus niloticus, Crocodylus novaeguineae, Crocodylus palustis, Crocodylus rhombifer, Crocodylus siamensis, and Osteolaemus tetraspis. Our results show a high level of microsatellites cross-amplification making available polymorphic markers for a range of crocodilian species previously lacking informative genetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Davis L, Glenn T, Strickland D et al (2002) Microsatellite DNA analyses support an east–west phylogeographic split of American alligator populations. J Exp Zool (Mol Dev Evol) 294:352–372

    Article  CAS  Google Scholar 

  • Dessauer H, Glenn T, Densmore L (2002) Studies on the molecular evolution of the Crocodylia: footprints in the sands of time. J Exp Zool (Mol Dev Evol) 294:302–311

    Article  CAS  Google Scholar 

  • Dever J, Densmore L III (2001) Microsatelittes in Moreleti’s crocodile (Crocodylus moreletti) and their utility in addressing crocodilian population genetics. J Herpetol 35:541–544

    Article  Google Scholar 

  • Dever J, Strauss R, Rainwater T et al (2002) Genetic diversity, population subdivision and gene flow in wild populations of Morelet’s crocodile (Crocodylus moreletii) in Belize, Central America. Copeia 2002:1078–1091

    Article  Google Scholar 

  • FitzSimmons N, Tanksley S, Forstner M et al (2001) Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Grigg J, Seebacher F, Franlin C (eds) Crocodilian biology and evolution. Surrey Beatty and Sons, Chipping Norton, Australia, pp 51–57

    Google Scholar 

  • FitzSimmons N, Buchan J, Lam P et al (2002) Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. J Exp Zool (Mol Dev Evol) 294:373–381

    Article  CAS  Google Scholar 

  • Glenn T, Stephan W, Dessauer H, Braun M (1996) Allelic diversity in alligator microsatellites loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. Mol Biol Evol 13:1151–1154

    PubMed  CAS  Google Scholar 

  • Glenn T, Dessauer H, Braun M (1998) Characterisation of microsatellite DNA loci in American alligators. Copeia 1998:591–601

    Article  Google Scholar 

  • Isberg S, Chen Y, Barker S, Moran C (2004) Analysis of microsatellites and parentage testing in saltwater crocodiles. J Hered 95(5):445–449

    Article  PubMed  CAS  Google Scholar 

  • Isberg S, Johnston S, Chen Y, Moran C (2006) First evidence of higher female recombination in a species with temperature-dependent sex determination: the saltwater crocodile. J Hered 97(6):599–602

    Article  PubMed  CAS  Google Scholar 

  • Janke A, Gullberg A, Hughes S et al (2005) Mitogenomic analyses place the gharial (Gavialis gangeticus) on crocodile tree and provide pre-K/T divergence times for most crocodilians. J Mol Evol 61:620–626

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski S, Taper M, Marshall T (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Moore S, Sargeant L, King T et al (1991) The conservation of dinucleotide microsatellite among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10:654–660

    Article  PubMed  CAS  Google Scholar 

  • Moran C (1993) Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes. J Hered 84:274–280

    PubMed  CAS  Google Scholar 

  • Primmer C, Moller A, Ellegren H (1996) A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5(3):365–378

    Article  PubMed  CAS  Google Scholar 

  • Primmer C, Painter J, Koshtinen M et al (2005) Factors affecting avian cross-species microsatellite amplification. J Avian Biol 36:348–360

    Article  Google Scholar 

  • Ramos R, de Buffrenil V, Ross J (1994) Current status of the Cuban crocodile, Crocodylus rhombifer, in the wild. In: Crocodiles, proceedings of the 12th working meeting of the crocodile specialist group, IUCN, Gland, Switzerland, pp, 113–140

  • Ray D, Dever J, Platt S et al (2004) Low levels of nucleotide diversity in Crocodylus morelettii and evidence of hybridisation with C. acutus. Conserv Genet 5:449–464

    Article  CAS  Google Scholar 

  • Selkoe K, Toonen R (2006) Microsatellites for ecologists: a practical guide to using and evaluating markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Shedlock A, Botka C, Zhao S et al (2007) Phylogenomics of non-avian reptiles and the structure of the ancestral amniote genome. PNAS 104(8):2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Verdade L, Zucoloto R, Coutinho L (2002) Microgeographic variation in Caiman latirostris. J Exp Zool (Mol Dev Evol) 294:387–396

    Article  CAS  Google Scholar 

  • Wilson A, Massonnet B, Simon J et al (2004) Cross-species amplification of microsatellite loci in aphids: assessment and application. Mol Ecol Notes 4:104–109

    Article  CAS  Google Scholar 

  • Zucoloto R, Verdade L, Coutinho L (2002) Microsatellite DNA Library for Caiman latirostris. J Exp Zool (Mol Dev Evol) 294:346–351

    Article  CAS  Google Scholar 

  • Zucoloto R, Villela P, Verdade L, Coutinho L (2006) Cross-species microsatellite amplification in South American Caimans (Caiman spp and Paleosuchus palpebrosus). Genet Mol Biol 29(1):75–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Rural Industries Research and Development Corporation grant US-139A to the University of Sydney. All research took place at the University of Sydney, Australia, and the Savannah River Ecology Laboratory (SREL), of the University of Georgia, USA. We thank Dr. Kent Vliet, Dr. Robert Godshalk, Mitch Eaton and Matthew Shirley who kindly provided us with many of the crocodilian DNA samples included in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee G. Miles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, L.G., Lance, S.L., Isberg, S.R. et al. Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future. Conserv Genet 10, 935–954 (2009). https://doi.org/10.1007/s10592-008-9601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9601-6

Keywords

Navigation